

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

June 2009

3895-8/7895-8/MS/R/09

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

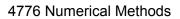
OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk


CONTENTS

Advanced GCE Mathematics (MEI) (7895) Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME FOR THE UNITS

Unit/Content	Page
4751 (C1) Introduction to Advanced Mathematics	3
4752 (C2) Concepts for Advanced Mathematics	8
4753 (C3) Methods for Advanced Mathematics	11
4754 (C4) Applications of Advanced Mathematics	17
4755 (FP1) Further Concepts for Advanced Mathematics	23
4756 (FP2) Further Methods for Advanced Mathematics	28
4757 Further Pure 3	34
4758 Differential Equations	42
4761 Mechanics 1	46
4762 Mechanics 2	52
4763 Mechanics 3	56
4764 MEI Mechanics 4	60
4766 Statistics 1	63
4767 Statistics 2	67
4768 Statistics 3	71
4769 Statistics 4	76
4771 Decision Mathematics 1	80
4772 Decision Mathematics 2	85
4773 Decision Mathematics Computation	90

4777 MEI Numerical Computation

Grade Thresholds

MWWW. My Marks June 20. Painscioud.com 4751 (C1) Introduction to Advanced Mathematics

Sect	ion A			
1	(0, 14) and (14/4, 0) o.e. isw	4	M2 for evidence of correct use of gradient with (2, 6) eg sketch with 'stepping' or y - 6 = -4(x - 2) seen or $y = -4x + 14$ o.e. or M1 for $y = -4x + c$ [accept any letter or number] and M1 for $6 = -4 \times 2 + c$; A1 for (0, 14) [$c = 14$ is not sufficient for A1] and A1 for (14/4, 0) o.e.; allow when x = 0, y = 14 etc isw	4
2	$[a =]\frac{2(s - ut)}{t^2}$ o.e. as final answer [condone $[a =]\frac{(s - ut)}{0.5t^2}$]	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty [eg dividing by t does not count as step – needs to be by t^2] $[a =] \frac{(s - ut)}{\frac{1}{2}t^2}$ gets M2 only (similarly other triple-deckers)	3
3	10 www	3	M1 for $f(3) = 1$ soi and A1 for 31 - 3k = 1 or $27 - 3k = -3$ o.e. [a correct 3-term or 2-term equation] long division used: M1 for reaching $(9 - k)x + 4$ in working and A1 for $4 + 3(9 - k) = 1$ o.e. equating coeffts method: M2 for $(x - 3)(x^2 + 3x - 1)$ [+ 1] o.e. (from inspection or division)	3
4	x < 0 or $x > 6$ (both required)	2	B1 each; if B0 then M1 for 0 and 6 identified;	2
5	(i) 10 www	2	M1 for $\frac{5 \times 4 \times 3}{3 \times 2(\times 1)}$ or $\frac{5 \times 4}{2(\times 1)}$ or for 1 5 10 10 5 1 seen	
	(ii) 80 www or ft 8 × their (i)	2	B2 for $80x^3$; M1 for 2^3 or $(2x)^3$ seen	4

			cheme June 2 M0 for just trying numbers, even if some odd, some even or $n(n^2 - 1)$ used with <i>n</i> odd implies $n^2 - 1$ even and odd × even = even etc [allow even	N.M.YM	142 143
4751	i M ;	cheme June 2	20. 3	The the	
6	any general attempt at n being odd and n being even	M1	M0 for just trying numbers, even if some odd, some even		Sloud.con
	<i>n</i> odd implies n^3 odd and odd – odd = even	A1	or $n(n^2 - 1)$ used with <i>n</i> odd implies $n^2 - 1$ even and odd × even = even etc [allow even × odd = even]		
	n even implies n^3 even and even – even = even	A1	or A2 for $n(n-1)(n+1) =$ product of 3 consecutive integers; at least one even so product even; odd ³ - odd = odd etc is not sufft for A1		
			SC1 for complete general method for only one of odd or even eg $n = 2m$ leading to $2(4m^3 - m)$	3	
7	(i) 1	2	B1 for 5° or for $25 \times 1/25$ o.e.	+	
	(ii) 1000	1		3	
8	(i) 2/3 www	2	M1 for 4/6 or for $\sqrt{48} = 2\sqrt{12}$ or $4\sqrt{3}$ or	+1	
			$\sqrt{27} = 3\sqrt{3}$ or $\sqrt{108} = 3\sqrt{12}$ or for $\sqrt{\frac{4}{9}}$		
	(ii) $43 - 30\sqrt{2}$ www as final answer	3	M2 for 3 terms correct of $25 - 15\sqrt{2} - 15\sqrt{2} + 18$ soi, M1 for 2 terms correct	5	
9	(i) $(x+3)^2 - 4$	3	B1 for $a = 3$, B2 for $b = -4$ or M1 for $5 -$	++	1
	(ii) ft their $(-a, b)$;	2	3^2 soi B1 each coord.; allow $x = -3$, $y = -4$; or M1		
	if error in (i), accept $(-3, -4)$ if evidence of being independently		for $\begin{bmatrix} -3 \\ \end{bmatrix}$ o.e. of for sketch with -3 and -4		
	obtained		$\begin{bmatrix} -4 \end{bmatrix}$ marked on axes but no coords given	5	
				5	
10	$(x^2 - 9)(x^2 + 4)$	M2	or correct use of quad formula or comp sq reaching 9 and -4; allow M1 for attempt with correct eqn at factorising with factors giving two terms correct, or sign error, or attempt at formula or comp sq [no more than two errors in formula/substn]; for this first M2 or M1 allow use of y etc or of x instead of x^2		
	$x^2 = 9$ [or -4] or ft for integers /fractions if first M1 earned $x = \pm 3$ cao	M1 A1	must have x^2 ; or M1 for $(x + 3)(x - 3)$; this M1 may be implied by $x = \pm 3$ A0 if extra roots if M0 then allow SC1 for use of factor theorem to obtain both 3 and -3 as roots or (x + 3) and $(x - 3)$ found as factors and SC2 for $x^2 + 4$ found as other factor using factor theorem [ie max SC3]	4	20

				nn	w.m.	Naths Scioud.com
4751	1	Mark	k Sche	me June	20 Marn	aths a
Sect	ion B					Cloud
11	i ii	y = 3x	2 M1		2	·COM
		eqn AB is $y = -1/3 x + 3$ o.e. or ft 3x = -1/3x + 3 or ft x = 9/10 or 0.9 o.e. cao y = 27/10 oe ft their 3 × their x	M1 A1 A1	need not be simplified; no ft from midpt used in (i); may be seen in (i) but do not give mark unless used in (ii) eliminating x or y , ft their eqns if find y first, cao for y then ft for x ft dep on both Ms earned	4	
	iii	$\left(\frac{9}{10}\right)^2 \left(1+3^2\right)$ o.e and completion to given answer	2	or square root of this; M1 for $\left(\frac{9}{10}\right)^2 + \left(\frac{27}{10}\right)^2$ or $0.81 + 7.29$ soi or ft their coords (inc midpt) <u>or</u> M1 for distance = $3 \cos \theta$ and $\tan \theta =$ 3 and M1 for showing $\sin \theta = \frac{3}{\sqrt{10}}$ and completion	2	
	iv	2\sqrt{10}	2	M1 for $6^2 + 2^2$ or 40 or square roots of these	2	
	v	9 www or ft their $a\sqrt{10}$	2	M1 for $\frac{1}{2} \times 3 \times 6$ or $\frac{1}{2} \times \text{their } 2\sqrt{10} \times \frac{9}{10}\sqrt{10}$	2	12

4751	1	Mark	Scher	me June 2	y. Mymar	MA ASHS COM
						CIOLA
12	iA	expansion of one pair of brackets correct 6 term expansion	M1 M1	eg $[(x + 1)](x^2 - 6x + 8)$; need not be simplified eg $x^3 - 6x^2 + 8x + x^2 - 6x + 8$; or M2 for correct 8 term expansion: $x^3 - 4x^2 + x^2 - 2x^2 + 8x - 4x - 2x + 8$, M1 if one error		·com
				allow equivalent marks working backwards to factorisation, by long division or factor theorem etc or M1 for all three roots checked by factor theorem and M1 for comparing coeffts of x^3	2	
	iB	cubic the correct way up <i>x</i> -axis: -1, 2, 4 shown <i>y</i> -axis 8 shown	G1 G1 G1	with two tps and extending beyond the axes at 'ends' ignore a second graph which is a		
				translation of the correct graph	3	
	iC	$[y=](x-2)(x-5)(x-7) \text{ isw or} (x-3)^3 - 5(x-3)^2 + 2(x-3) + 8 \text{ isw} or x^3 - 14x^2 + 59x - 70$	2	M1 if one slip or for $[y =] f(x - 3)$ or for roots identified at 2, 5, 7 or for translation 3 to the left allow M1 for complete attempt: $(x + 4)(x + 1)(x - 1)$ isw or $(x + 3)^3 - 5(x + 3)^2 + 2(x + 3) + 8$ isw		
		(0, -70) or $y = -70$	1	allow 1 for (0, -4) or $y = -4$ after f(x + 3) used	3	
	ii	27 - 45 + 6 + 8 = -4 or $27 - 45 + 6 + 12 = 0$	B1	or correct long division of $x^3 - 5x^2 + 2x$ + 12 by $(x - 3)$ with no remainder or of $x^3 - 5x^2 + 2x + 8$ with rem -4		
		long division of $f(x)$ or their $f(x) + 4$ by $(x - 3)$ attempted as far as $x^3 - 3x^2$ in working	M1	or inspection with two terms correct eg $(x-3)(x^2 \dots - 4)$		
		$x^2 - 2x - 4$ obtained	A1			
		$[x=]\frac{2\pm\sqrt{(-2)^2-4\times(-4)}}{2} \text{ or } (x-1)^2 = 5$	M1	dep on previous M1 earned; for attempt at formula or comp square on their other 'factor'		
		$\frac{2\pm\sqrt{20}}{2}$ o.e. isw or $1\pm\sqrt{5}$	A1		5	13

475 [,]	1	Mark	k Scheme June			My Nisens HISCIOUU.COM
13	i	(5, 2) $\sqrt{20}$ or $2\sqrt{5}$	1 1	0 for $\pm\sqrt{20}$ etc	2	T.COM
	ii	no, since $\sqrt{20} < 5$ or showing roots of $y^2 - 4y + 9 = 0$ o.e. are not real	2	or ft from their centre and radius M1 for attempt (no and mentioning $\sqrt{20}$ or 5) or sketch or solving by formula or comp sq $(-5)^2 + (y-2)^2 = 20$ [condone one error]		
				or SC1 for fully comparing distance from <i>x</i> axis with radius and saying yes	2	
	iii	y = 2x - 8 or simplified alternative	2	M1 for $y - 2 = 2(x - 5)$ or ft from (i) or M1 for $y = 2x + c$ and subst their (i) or M1 for ans $y = 2x + k$, $k \neq 0$ or -8	2	
	iv	$(x-5)^2 + (2x)^2 = 20$ o.e.	M1	subst $2x + 2$ for y [oe for x]		
		$5x^2 - 10x + 5[=0]$ or better equiv.	M1	expanding brackets and rearranging to 0;		
		obtaining $x = 1$ (with no other roots) or showing roots equal	M1	condone one error; dep on first M1		
		one intersection [so tangent]	A1	o.e.; must be explicit; or showing line joining (1,4) to centre is perp to $y = 2x$ +2		
		(1, 4) cao	A1	allow $y = 4$		
		$\frac{\text{alt method}}{y - 2} = -\frac{1}{2} (x - 5) \text{ o.e.}$ $2x + 2 - 2 = -\frac{1}{2} (x - 5) \text{ o.e.}$ x = 1 y = 4 cao	M1 M1 A1 A1	line through centre perp to $y = 2x + 2$ dep; subst to find intn with $y = 2x + 2$		
		showing $(1, 4)$ is on circle	B1	by subst in circle eqn or finding dist from centre = $\sqrt{20}$ [a similar method earns first M1 for eqn of diameter, 2nd M1 for intn of diameter and circle A1 each for x and y coords and last B1 for showing (1, 4) on line – award onlyA1 if (1, 4) and (9, 0) found without (1, 4) being identified as the		
		alt method perp dist between $y = 2x - 8$ and $y = 2x + 2 = 10 \cos \theta$ where $\tan \theta = 2$	M1	soln]		
		showing this is $\sqrt{20}$ so tgt	M1			
		$\begin{array}{l} x = 5 - \sqrt{20} \sin \theta \\ x = 1 \end{array}$	M1 A1	or other valid method for obtaining <i>x</i>		11
		(1, 4) cao	A1	allow $y = 4$	5	

MWWW. My Marks June 20. Painscioud.com 4752 (C2) Concepts for Advanced Mathematics

Sect	tion A			
1	using Pythagoras to show that hyp. of	M1	www	
	right angled isos. triangle with sides a			
	and <i>a</i> is $\sqrt{2a}$. 1	<i>a</i> any letter or a number	
	completion using definition of cosine	A1	NB answer given	2
2	$2x^6 + 5x$	M2	M1 if one error	
	value at $2 - $ value at 1	M1	ft attempt at integration only	
	131	A1		4
3	(i) 193	2	M1 for 8 + 15 ++ 63	
	(ii) diagona ant i difference a la stara an			
	(ii) divergent + difference between	1		3
	terms increasing o.e.	1		3
4	(i) 2.4	2	M1 for 43.2 ÷ 18	
	(ii) 138	2	M1 for their (i) $\times \frac{180}{\pi}$ or	
			$\theta = \frac{43.2 \times 360}{36\pi}$ o.e. or for other rot	4
			versions of 137.50	
5	(i)sketch of cosx ; one cycle,	1		
	sketch of $\cos 2x$; two cycles,	1		
	both axes scaled correctly	D1		
	(ii) (1-way) stretch parallel to y-axis	1		
	sf 3	D1		5
	51.5			5
6	$y' = 3x^2 - 12x - 15$	M1	for two terms correct	
	use of $y' = 0$, s.o.i. ft	M1		
	x = 5, -1 c.a.o.	A1		
	x < -1 or $x > 5$ ft	A1		_
		A1		5
7	use of $\cos^2 \theta = 1 - \sin^2 \theta$	M1		
	at least one correct interim step in obtaining $4 \sin^2 \theta - \sin \theta = 0$.	M1	NB answer given	
	obtaining 4 sin $\theta - \sin \theta = 0$.		NB answer given	
	$\theta = 0$ and 180,	B1		
	14.(47)	B1	r.o.t to nearest degree or better	
	165 - 166	B1	-1 for extras in range	5
8	attempt to integrate $3\sqrt{x} - 5$	M1		
	$[y=] 2x^{\frac{3}{2}} - 5x + c$	A2	A1 for two terms correct	
	subst of (4, 6) in their integrated eqn	A2 M1		
	$c = 10 \text{ or } [y=] 2x^{\frac{3}{2}} - 5x + 10$	A1		5
				5

4751		Mark So	Mark Scheme			The superior was a superior of the superior of
9	(i) 7 (ii) 5 5 c c	1 2	M1 for at least one of 5 log g or			oud.com
	(ii) 5.5 o.e.		M1 for at least one of $5 \log_{10} a$ or $\frac{1}{2} \log_{10} a$ or $\log_{10} a^{5.5}$ o.e.		3	

oti D C

Sect	tion B				
10	i	0.6(0), 0.8(45), [1], 1.1(76)	T1	Correct to 2 d.p. Allow 0.6, 1.3 and 1.6	
		1.3(0), 1.6(0)	D1		
		points plotted correctly ft ruled line of best fit	P1 L1	tol. 1 mm	3
		ruled line of dest lit	LI		3
	ii	b = their intercept	M1		
		a = their gradient	M1		
		$-11 \le b \le -8$ and $21 \le a \le 23.5$	A1		3
	iii	34 to 35 m	1		1
		6	2.64		
	iv	$29 = 22' \log t - 9'$	M1		
		$t = 10^{(1.727)}$	M1		
		t = 10	1011		
		55 [years] approx	A1	accept 53 to 59	3
		co Louis approx		1	-
1	v	For small <i>t</i> the model predicts a	1		
1		negative height (or $h = 0$ at approx			
		2.75)	-		
		Hence model is unsuitable	D1		2
11	iA	10 + 20 + 30 + 40 + 50 + 60	B1	(2)(10+5)(10) = 6(10+(0))	1
11	IA	10 + 20 + 30 + 40 + 30 + 60	DI	or $\frac{6}{2}(2 \times 10 + 5 \times 10)$ or $\frac{6}{2}(10 + 60)$	1
	iB	correct use of AP formula with	M1		
		a = 10 and $d = 10$			
		n(5+5n) or $5n(n+1)$ or	A1		
		$5(n^2 + n)$ or $(5n^2 + 5n)$			
		$10n^2 + 10n - 20700 = 0$	M1	Or better	
		10n + 10n - 20700 = 0 45 c.a.o.	Al	Of better	4
		15 0.0.0.	111		
	iiA	4	1		1
	iiB	£2555	2	M1 for $5(1 + 2 +2^8)$ or $5(2^9 - 1)$ o.e.	2
			2.61		
	iiC	correct use of GP formula with $r=5$ $r=2$	M1		
		a = 5, r = 2			
1		$5(2^n - 1)$ o.e. = 2621435	D	'S' need not be simplified	
			M1	r	
1		$2^n = 524288$ www			
			M1		
		19 c.a.o.	A 1		4
12	i	6.1	A1 2		
14		0.1		M1 for $\frac{(3.1^2 - 7) - (3^2 - 7)}{3.1 - 3}$ o.e.	2
				3.1-3	4
1	1	I	I	I	1

4751	Mark	Sche	me	hun nynai	MA ASSIS
ii	$\frac{\left((3+h)^2-7\right)-\left(3^2-7\right)}{h}$ numerator = $6h + h^2$ 6+h	M1 M1 A1	s.o.i.	3	cloud.com
iii	as <i>h</i> tends to 0, grad. tends to 6 o.e. f.t.from "6"+h	M1 A1		2	
iv	y-2 = 6'(x-3) o.e. y = 6x - 16	M1 A1	6 may be obtained from $\frac{dy}{dx}$	2	
v	At P, $x = 16/6$ o.e. or ft At Q, $x = \sqrt{7}$ 0.021 c.a.o.	M1 M1 A1		3	

MWWW. My Marks June 20. Painscioud.com

4753 (C3) Methods for Advanced Mathematics

Sect	ion A		
1	$\int_{0}^{\frac{\pi}{6}} \sin 3x dx = \left[-\frac{1}{3}\cos 3x\right]_{0}^{\frac{\pi}{6}}$ $= -\frac{1}{3}\cos \frac{\pi}{2} + \cos 0$ $= \frac{1}{3}$	B1 M1 A1cao	$\left[-\frac{1}{3}\cos 3x\right]$ or $\left[-\frac{1}{3}\cos u\right]$ substituting correct limits in $\pm k \cos \ldots$
$2(\mathbf{i})$ \Rightarrow \Rightarrow \Rightarrow	$100 = Ae^{0} = A \implies A = 100$ $50 = 100 e^{-1500k}$ $e^{-1500k} = 0.5$ $-1500k = \ln 0.5$ $k = -\ln 0.5 \div 1500 = 4.62 \times 10^{-4}$	[3] M1A1 M1 M1 A1	0.33 or better. $50 = A e^{-1500k}$ ft their 'A' if used taking lns correctly 0.00046 or better
(ii) ⇒ ⇒	$1 = 100e^{-kt}$ -kt = ln 0.01 t = -ln 0.01 ÷ k = 9966 years	[5] M1 M1 A1 [3]	ft their <i>A</i> and <i>k</i> taking lns correctly art 9970
3	2π -1 1 1	M1 B1 A1 [3]	Can use degrees or radians reasonable shape (condone extra range) passes through $(-1, 2\pi)$, $(0, \pi)$ and $(1, 0)$ good sketches – look for curve reasonably vertical at $(-1, 2\pi)$ and $(1, 0)$, negative gradient at $(0, \pi)$. Domain and range must be clearly marked and correct.
4 ⇒	g(x) = 2 x-1 b = 2 0-1 = 2 or (0, 2) 2 x-1 = 0 x = 1, so a = 1 or (1, 0)	B1 M1 A1 [3]	Allow unsupported answers. www x = 1 is A0 www

4753 Mari	< Scheme	Their $2e^{2y} \times \frac{dy}{dr}$
5(i) $e^{2y} = 1 + \sin x$ $\Rightarrow 2e^{2y} \frac{dy}{dx} = \cos x$	M1 B1	Their $2e^{2y} \times \frac{dy}{dx}$ $2e^{2y}$
$\Rightarrow \frac{\mathrm{d}x}{\mathrm{d}x} = \frac{\cos x}{2\mathrm{e}^{2y}}$	A1 [3]	o.e. cao
(ii) $2y = \ln(1 + \sin x)$ $\Rightarrow y = \frac{1}{2} \ln(1 + \sin x)$ $\Rightarrow \frac{dy}{dx} = \frac{1}{2} \frac{\cos x}{1 + \sin x}$ $= \frac{\cos x}{2e^{2y}}$ as before	B1 M1 B1 E1 [4]	chain rule (can be within 'correct' quotient rule with $dv/dx = 0$) $1/u$ or $1/(1 + \sin x)$ soi www
6 $f f(x) = \frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1}$ = $\frac{x+1+x-1}{x+1-x+1}$ = $\frac{2x}{2} = x^{*}$ $f^{-1}(x) = f(x)$ Symmetrical about $y = x$.	M1 M1 E1 B1 [5]	correct expression without subsidiary denominators e.g. $= \frac{x+1+x-1}{x-1} \times \frac{x-1}{x+1-x+1}$ stated, or shown by inverting
7(i) (A) $(x - y)(x^{2} + xy + y^{2})$ $= x^{3} + x^{2}y + xy^{2} - yx^{2} - xy^{2} - y^{3}$ $= x^{3} - y^{3} *$ (B) $(x + \frac{1}{2}y)^{2} + \frac{3}{4}y^{2}$ $= x^{2} + xy + \frac{1}{4}y^{2} + \frac{3}{4}y^{2}$ $= x^{2} + xy + y^{2}$	M1 E1 M1 E1 [4]	expanding - allow tabulation www $(x + \frac{1}{2}y)^2 = x^2 + \frac{1}{2}xy + \frac{1}{2}xy + \frac{1}{4}y^2$ o.e. cao www
(ii) $x^3 - y^3 = (x - y)[(x + \frac{1}{2}y)^2 + \frac{3}{4}y^2]$ $(x + \frac{1}{2}y)^2 + \frac{3}{4}y^2 > 0 \text{ [as squares } \ge 0]$ $\Rightarrow \text{ if } x - y > 0 \text{ then } x^3 - y^3 > 0$	M1 M1	substituting results of (i)
$\Rightarrow \text{if } x > y \text{ then } x^3 > y^3 *$	E1 [3]	

1750 Marile	0-home	June 20L
4753 Mark	Scheme	June 200 Par
8(i) A: $1 + \ln x = 0$ $\Rightarrow \qquad \ln x = -1 \text{ so A is } (e^{-1}, 0)$ $\Rightarrow \qquad x = e^{-1}$	M1 A1	SC1 if obtained using symmetry
B: $x = 0, y = e^{0-1} = e^{-1}$ so B is $(0, e^{-1})$	B1	condone use of symmetry Penalise $A = e^{-1}$, $B = e^{-1}$, or co-ords wrong
C: $f(1) = e^{1-1} = e^0 = 1$ g(1) = 1 + ln 1 = 1	E1 E1 [5]	way round, but condone labelling errors.
(ii) Either by invertion: e.g. $y = e^{x-1} x \leftrightarrow y$ $x = e^{y-1}$		
$ \Rightarrow \qquad \ln x = y - 1 \Rightarrow \qquad 1 + \ln x = y $	M1 E1	taking lns or exps
or by composing e.g. $fg(x) = f(1 + \ln x)$ $= e^{1 + \ln x - 1}$	M1	$e^{1 + \ln x - 1}$ or $1 + \ln(e^{x - 1})$
$= e^{\ln x} = x$	E1 [2]	
(iii) $\int_{0}^{1} e^{x-1} dx = \left[e^{x-1} \right]_{0}^{1}$ $= e^{0} - e^{-1}$ $= 1 - e^{-1}$	M1 M1 A1cao [3]	$[e^{x-1}]$ o.e. or $u = x - 1 \Rightarrow [e^u]$ substituting correct limits for x or u o.e. not e^0 , must be exact.
(iv) $\int \ln x dx = \int \ln x \frac{d}{dx}(x) dx$	M1	parts: $u = \ln x$, $du/dx = 1/x$, $v = x$, $dv/dx = 1$
$= x \ln x - \int x \frac{1}{x} dx$ $= x \ln x - x + c$	A1 A1cao	condone no ' <i>c</i> '
$\Rightarrow \int_{e^{-1}}^{1} g(x) dx = \int_{e^{-1}}^{1} (1 + \ln x) dx$ $= \left[x + x \ln x - x \right]_{e^{-1}}^{1}$	B1ft	ft their ' $x \ln x - x$ ' (provided 'algebraic')
$= [x \ln x)]_{e^{-1}}^{l}$	DM1	substituting limits dep B1
$= 1\ln 1 - e^{-1}\ln(e^{-1}) = e^{-1} *$	E1 [6]	www
(v) Area = $\int_{0}^{1} f(x) dx - \int_{e^{-1}}^{1} g(x) dx \int_{0}^{1} f(x) dx - \int_{e^{-1}}^{1} g(x) dx$	M1	Must have correct limits
$J_0^{-1} = (1 - e^{-1}) - e^{-1}$ $= 1 - \frac{2}{e}$	A1cao	0.264 or better.

June 200 Mainscio

or or	Area OCB = area under curve – triangle = $1 - e^{-1} - \frac{1}{2} \times 1 \times 1$ = $\frac{1}{2} - e^{-1}$	M1	OCA or OCB = $\frac{1}{2} - e^{-1}$	Soud-com
	Area OAC = triangle – area under curve $= \frac{1}{2} \times 1 \times 1 - e^{-1}$ $= \frac{1}{2} - e^{-1}$ Total area = $2(\frac{1}{2} - e^{-1}) = 1 - \frac{2}{e}$	A1cao [2]	0.264 or better	

4753 Mai	rk Schen	me June 200 marsch	ALLAS DE
Section B			bud
9(i) $a = \frac{1}{3}$	B1 [1]	or 0.33 or better	·COM
(ii) $\frac{dy}{dx} = \frac{(3x-1)2x - x^2 \cdot 3}{(3x-1)^2}$ = $\frac{6x^2 - 2x - 3x^2}{(3x-1)^2}$	M1 A1	quotient rule	
$= \frac{3x^2 - 2x}{(3x - 1)^2}$ $= \frac{x(3x - 2)}{(3x - 1)^2} *$	E1 [3]	www – must show both steps; penalise missing brackets.	
(iii) $\frac{dy}{dx} = 0$ when $x(3x - 2) = 0$	M1	if denom = 0 also then M0	
$\Rightarrow x = 0 \text{ or } x = \frac{2}{3}, \text{ so at P, } x = \frac{2}{3}$	A1	o.e e.g. 0.6, but must be exact	
when $x = \frac{2}{3}$, $y = \frac{(2/3)^2}{3 \times (2/3) - 1} = \frac{4}{9}$	M1 A1cao	o.e e.g. 0.4, but must be exact	
when $x = 0.6$, $\frac{dy}{dx} = -0.1875$	B1	-3/16, or -0.19 or better	
when $x = 0.8$, $\frac{dy}{dx} = 0.1633$ Gradient increasing \Rightarrow minimum	B1 E1 [7]	 8/49 or 0.16 or better o.e. e.g. 'from negative to positive'. Allow ft on their gradients, provided –ve and +ve respectively. Accept table with indications of signs of gradient. 	
(iv) $\int \frac{x^2}{3x-1} dx$ $u = 3x-1 \Rightarrow du = 3dx$ $(u+1)^2$	B1	$\frac{\frac{(u+1)^2}{9}}{u}$ o.e.	
$=\int \frac{\frac{(u+1)^2}{9}}{u} \frac{1}{3} du$	M1	$\times \frac{1}{3}$ (du)	
$= \frac{1}{27} \int \frac{(u+1)^2}{u} \mathrm{d}u = \frac{1}{27} \int \frac{u^2 + 2u + 1}{u} \mathrm{d}u$	M1	expanding	
$=\frac{1}{27}\int (u+2+\frac{1}{u}) \mathrm{d}u *$	E1	condone missing du's	
Area = $\int_{\frac{2}{3}}^{1} \frac{x^2}{3x - 1} dx$			
When $x = \frac{2}{3}$, $u = 1$, when $x = 1$, $u = 2$			
$= \frac{1}{27} \int_{1}^{2} (u+2+\frac{1}{u}) du$ $= \frac{1}{27} \left[\frac{1}{2} u^{2} + 2u + \ln u \right]_{1}^{2}$	B1	$\left[\frac{1}{2}u^2 + 2u + \ln u\right]$	
$= \frac{1}{27} \left[(2 + 4 + \ln 2) - (\frac{1}{2} + 2 + \ln 1) \right]$	M1	substituting correct limits, dep integration	

Section B

15

4753

Mark Scheme

June 200 Ang

$= \frac{1}{27} (3\frac{1}{2} + \ln 2) \left[= \frac{7 + 2\ln 2}{54} \right]$	A1cao [7]	o.e., but must evaluate $\ln 1 = 0$ and collect terms.	roud.com
---	--------------	--	----------

MWWW. My May Magins June 20. Mainscioud.com 4754 (C4) Applications of Advanced Mathematics

Section A

1	$4\cos\theta - \sin\theta = R\cos(\theta + \alpha)$ = $R\cos\theta\cos\alpha - R\sin\theta\sin\alpha$ $\Rightarrow R\cos\alpha = 4, R\sin\alpha = 1$ $\Rightarrow R^2 = 1^2 + 4^2 = 17, R = \sqrt{17} = 4.123$ $\tan\theta = \frac{1}{4}$ $\Rightarrow \theta = 0.245$	M1 B1 M1 A1	correct pairs $R = \sqrt{17} = 4.123$ $\tan \theta = \frac{1}{4}$ o.e. $\theta = 0.245$
$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{array}$	$\sqrt{17} \cos(\theta + 0.245) = 3$ $\cos(\theta + 0.245) = \frac{3}{\sqrt{17}}$ $\theta + 0.245 = 0.756, 5.527$ $\theta = 0.511, 5.282$	M1 A1A1 [7]	θ + 0.245 = arcos 3/ $\sqrt{17}$ ft their <i>R</i> , α for method (penalise extra solutions in the range (-1))
2	$\frac{x}{(x+1)(2x+1)} = \frac{A}{x+1} - \frac{B}{(2x+1)}$	M1	correct partial fractions
⇒	x = A(2x + 1) + B(x + 1) $x = -1 \implies -1 = -A \implies A = 1$ $x = -\frac{1}{2} \implies -\frac{1}{2} = \frac{1}{2}B \implies B = -1$	M1 A1 A1	substituting, equating coeffts or cover-up A = 1 B = -1
\Rightarrow	$\frac{x}{(x+1)(2x+1)} = \frac{1}{x+1} - \frac{1}{(2x+1)}$	B1	$\ln(x+1)$ ft their A
\Rightarrow	$\int \frac{x}{(x+1)(2x+1)} \mathrm{d}x = \int \frac{1}{x+1} - \frac{1}{(2x+1)} \mathrm{d}x$	B1	$-\frac{1}{2}\ln(2x+1)$ ft their <i>B</i>
	$= \ln(x+1) - \frac{1}{2}\ln(2x+1) + c$	A1 [7]	cao – must have <i>c</i>
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 y$		
\Rightarrow	$\int \frac{\mathrm{d}y}{v} = \int 3x^2 \mathrm{d}x$	M1	separating variables
\Rightarrow	$\ln y = x^{3} + c$ when $x = 1, y = 1, \Rightarrow \ln 1 = 1 + c \Rightarrow c = -1$ $\ln y = x^{3} - 1$	A1 B1	condone absence of c c = -1 o.e.
\Rightarrow	$y = e^{x^3 - 1}$	A1 [4]	o.e.
4	When $x = 0$, $y = 4$	B1	
\Rightarrow	$V = \pi \int_0^4 x^2 \mathrm{d}y$	M1	must have integral, π , x^2 and dy s.o.i.
	$=\pi\int_0^4 (4-y)\mathrm{d}y$	M1	must have π , their (4–y), their numerical y limits
	$= \pi \left[4y - \frac{1}{2}y^2 \right]_0^4$ = $\pi (16 - 8) = 8\pi$	B1 A1	$\left[4y - \frac{1}{2}y^2\right]$
	$-\mu(10-0)=0\mu$	[5]	

4754	Mark S	Scheme	Mun.myns June 20.	My Natis
5	$\frac{dy}{dt} = -a(1+t^2)^{-2}.2t$	M1		Yd.com
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3at^2$	A1	$(1+t^2)^{-2} \times kt$ for method	
\Rightarrow	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{-2at}{3at^2\left(1+t^2\right)^2}$	B1		
	$=\frac{-2}{3t(1+t^2)^2}*$	M1	ft	
	At $(a, \frac{1}{2}a)$, $t = 1$	E1		
⇒	$\text{gradient} = \frac{-2}{3 \times 2^2} = -\frac{1}{6}$	M1 A1 [7]	finding <i>t</i>	
6 ⇒	$\csc^2 \theta = 1 + \cot^2 \theta$ $1 + \cot^2 \theta - \cot \theta = 3 *$	E1	clear use of $1 + \cot^2 \theta = \csc^2 \theta$	
	$\cot^2\theta - \cot\theta - 2 = 0$	M1	factorising or formula	
\Rightarrow	$(\cot \theta - 2)(\cot \theta + 1) = 0$	A1	roots 2, -1	
\Rightarrow	$\cot \theta = 2$, $\tan \theta = \frac{1}{2}$, $\theta = 26.57^{\circ}$	M1	$\cot = 1/\tan used$	
	$\cot \theta = -1$, $\tan \theta = -1$, $\theta = 135^{\circ}$	A1 A1	$ \begin{array}{l} \theta = 26.57^{\circ} \\ \theta = 135^{\circ} \end{array} $	
		[6]	(penalise extra solutions in the range (-1))	

4754Mark SchemeJune 200Section B7(i) $\vec{n}_{1} = \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}$ B1 $r = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + k \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ B1 $r = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + k \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ B1 $cos = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \frac{1}{\sqrt{2}\sqrt{3}} = \frac{1}{\sqrt{10}}$ B1 $cos = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \frac{1}{\sqrt{2}\sqrt{3}} = \frac{1}{\sqrt{10}}$ B1 $\Rightarrow \theta = 71.57^{\circ}$ A1 (iii) $cos = \begin{bmatrix} -1 \\ 0 \\ -1 \\ \sqrt{2}\sqrt{9} \end{bmatrix} = \frac{2+1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ (iii) $cos = \begin{bmatrix} -1 \\ 0 \\ -1 \\ \sqrt{2}\sqrt{9} \end{bmatrix} = \frac{2+1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ (iii) $cos = \begin{bmatrix} -1 \\ 0 \\ -1 \\ \sqrt{2}\sqrt{9} \end{bmatrix} = \frac{2+1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ (iii) $cos = \begin{bmatrix} -1 \\ 0 \\ -1 \\ \sqrt{2}\sqrt{9} \end{bmatrix} = \frac{2+1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ (iv) $sin 71.57^{\circ} = k \sin 45^{\circ} = 1.34$ (iv) $sin 71.57^{\circ} = k \sin 45^{\circ} = 1.34$ (iv) $sin 71.57^{\circ} = k \sin 45^{\circ} = 1.34$ (iv) $ra = cos = 2 - \mu$ $x = 2\mu$ $y = 20^{2} - 2^{-1} - 1$ $x = 2\mu = -1$ $y = point of intersection is (-2, -2, 1)$ $distance travelled through glass$			www.m.
$\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}^{*} + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}^{*} + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}^{*} + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}^{*} + \begin{bmatrix} 1 \\ 2 $	4754	Mark Scheme	June 20
$ \begin{array}{c} \left(0\right) \\ \mathbf{r} = \begin{pmatrix}0\\0\\2\end{pmatrix} + \lambda \begin{pmatrix}1\\2\\2\end{pmatrix} \\ 0 \end{pmatrix} \\ \left(0\right) \\ \mathbf{r} = \begin{pmatrix}0\\0\\2\end{pmatrix} + \lambda \begin{pmatrix}1\\2\\2\end{pmatrix} \\ 0 \end{pmatrix} \\ \left(0\right) \\ \left(1\right) \\ $			
(ii) $\mathbf{n} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\mathbf{7(i)} \overrightarrow{AB} = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$	B1	
$\begin{array}{c} \left(\mathbf{i} \mathbf{i} \mathbf{j} \right) = \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{\sqrt{2}\sqrt{5}} = \frac{1}{\sqrt{10}} \\ \Rightarrow \theta = 71.57^{\circ} \\ \left(\mathbf{i} \mathbf{i} \mathbf{j} \right) = \frac{1}{\sqrt{2}\sqrt{5}} = \frac{1}{\sqrt{10}} \\ = \frac{1}{\sqrt{2}\sqrt{5}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \\ = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \\ \Rightarrow \theta = 45^{\circ} * \\ = \frac{1}{3} \\ (\mathbf{i} \mathbf{v}) \sin 71.57^{\circ} = k \sin 45^{\circ} \\ \Rightarrow k = \sin 71.57^{\circ} / \sin 45^{\circ} = 1.34 \\ \end{array} \qquad \begin{array}{c} \mathbf{M} \mathbf{I} \\ \mathbf{A} \mathbf{I} \\ \mathbf{H} \\ \mathbf{A} \mathbf{I} \\ \mathbf$	$\mathbf{r} = \begin{pmatrix} 0\\0\\2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\0 \end{pmatrix}$		or equivalent alternative
$\Rightarrow \theta = 71.57^{\circ}$ A1 [5] by two modulae 72° or better 72°		B1	
$\Rightarrow \theta = 71.57^{\circ}$ $A1 [5] 72^{\circ} \text{ or better}$ $(iii) \cos \phi = \frac{\begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix}}{\sqrt{2}\sqrt{9}} = \frac{2+1}{3\sqrt{2}} = \frac{1}{\sqrt{2}}$ $M1 A1 E1 [3] ft their n for method \pm 1/\sqrt{2} \text{ o.e. exact} \Rightarrow \theta = 45^{\circ} * B1 [3] ft on their 71.57^{\circ} = k \sin 45^{\circ} \Rightarrow k = \sin 71.57^{\circ} / \sin 45^{\circ} = 1.34 M1 A1 [2] ft on their 71.57^{\circ} \Rightarrow e^{-2\mu} + \mu \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} x = -2\mu, z = 2 - \mu x + z = -1 \Rightarrow -2\theta + 2 - \theta = -1 \Rightarrow 3\theta = 3, \theta = 1 \Rightarrow point of intersection is (-2, -2, 1) distance travelled through glass M1 = \begin{cases} 72^{\circ} \text{ or better} \\ 10^{\circ} \text{ or better} \\ 11/\sqrt{2} $	$\cos\theta = \frac{\begin{pmatrix} 1\\0\\1 \end{pmatrix} \begin{pmatrix} 1\\2\\0 \end{pmatrix}}{\sqrt{2}\sqrt{5}} = \frac{1}{\sqrt{10}}$	M1	scalar product used finding invcos of scalar product divided
$\Rightarrow \theta = 45^{\circ} *$ $(iv) \sin 71.57^{\circ} = k \sin 45^{\circ}$ $\Rightarrow k = \sin 71.57^{\circ} / \sin 45^{\circ} = 1.34$ $M1 = \begin{bmatrix} 1 \\ [3] \\ [3] \end{bmatrix}$ ft on their 71.57^{\circ} o.e. (a)	$\Rightarrow \theta = 71.57^{\circ}$		
$\Rightarrow k = \sin 71.57^{\circ} / \sin 45^{\circ} = 1.34$ A1 [2] o.e. $\begin{bmatrix} (\mathbf{v}) & \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix}$ $x = -2\mu, z = 2 - \mu$ $x + z = -1$ $\Rightarrow -2\theta + 2 - \theta = -1$ $\Rightarrow 3\theta = 3, \theta = 1$ $\Rightarrow \text{ point of intersection is (-2, -2, 1)}$ M1 s.o.i. $\text{subst in } x + z = -1$ M1 A1 A2 A1 A1 A2 A1 A2 A1 A2 A3 A3 A3 A3 A3 A4 A4 A4 A4 A4 A4 A5		A1 E1	
$x = -2\mu, z = 2 - \mu$ $x + z = -1$ $\Rightarrow -2\theta + 2 - \theta = -1$ $\Rightarrow 3\theta = 3, \theta = 1$ $\Rightarrow \text{ point of intersection is (-2, -2, 1)}$ $distance travelled through glass$ $M1$ $s.o.i.$ $Subst in x + z = -1$ $A1$		A1	
$x = -2\mu, z = 2 - \mu$ $x + z = -1$ $\Rightarrow -2\theta + 2 - \theta = -1$ $\Rightarrow 3\theta = 3, \theta = 1$ $\Rightarrow \text{ point of intersection is (-2, -2, 1)}$ $distance travelled through glass$ $M1$ $s.o.i.$ $Subst in x + z = -1$ $A1$	$\mathbf{(v)} \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix}$		
$\begin{array}{c c} \Rightarrow & -2\theta + 2 - \theta = -1 \\ \Rightarrow & 3\theta = 3, \theta = 1 \\ \Rightarrow & \text{point of intersection is (-2, -2, 1)} \\ & \text{distance travelled through glass} \end{array} \qquad $	$x = -2\mu, \ z = 2 - \mu$	M1	s.o.i.
	$\Rightarrow -2\theta + 2 - \theta = -1$ $\Rightarrow 3\theta = 3, \theta = 1$	A1	subst in $x + z = -1$
= distance between (0, 0, 2) and (-2, -2, 1) = $\sqrt{(2^2 + 2^2 + 1^2)} = 3$ cm B1 www dep on $\mu = 1$	= distance between $(0, 0, 2)$ and $(-2, -)$	·	www dep on $\mu = 1$

4754	Mark Scheme	heme June 20. AB = 2AC or 2CB			
8(i) (A) $360^{\circ} \div 24 = 15^{\circ}$ CB/OB = sin 15° \Rightarrow CB = 1 sin 15° \Rightarrow AB = 2CB = 2 sin 15° *	M1 E1 [2]	AB = 2AC or 2CB $\angle AOC = 15^{\circ}$ o.e.			
(B) $\cos 30^\circ = 1 - 2 \sin^2 15^\circ$ $\cos 30^\circ = \sqrt{\frac{3}{2}}$	B1				
$\Rightarrow \sqrt{\frac{3}{2}} = 1 - 2 \sin^2 15^\circ$	B1				
$\Rightarrow 2\sin^2 15^\circ = 1 - \sqrt{\frac{3}{2}} = (2)$		simplifying			
$\Rightarrow \sin^2 15^\circ = \frac{2 - \sqrt{3}}{4}$ $\Rightarrow \sin 15^\circ = \sqrt{\frac{2 - \sqrt{3}}{4}} = \frac{1}{2}\sqrt{\frac{2 - \sqrt{3}}{4}}$					
$\Rightarrow \sin 15^\circ = \sqrt{\frac{2 - \sqrt{3}}{4}} = \frac{1}{2}\sqrt{\frac{2 - \sqrt{3}}{4}} = \frac{1}{2}\sqrt{\frac{1}{2}}$	$\sqrt{2-\sqrt{3}}$ * E1 [4]				
(C) Perimeter = $12 \times AB = 24$ = $12\sqrt{2-\sqrt{3}}$	$\times \frac{1}{2}\sqrt{2-\sqrt{3}}$ M1				
circumference of circle > perim polygon	neter of				
$\Rightarrow 2\pi > 12\sqrt{2} - \sqrt{3}$ $\Rightarrow \pi > 6\sqrt{2} - \sqrt{3}$	E1 [2]				
(ii) (A) $\tan 15^\circ = FE \div OF$ $\Rightarrow FE = \tan 15^\circ$	M1				
$\Rightarrow DE = 2FE = 2tan 15^{\circ}$	E1 [2]				
(B) $\tan 30 = \frac{2\tan 15}{1-\tan^2 15} = \frac{2t}{1-t^2}$	B1				
$\tan 30 = \frac{1}{\sqrt{3}}$	M1				
$\Rightarrow \frac{2t}{1-t^2} = \frac{1}{\sqrt{3}} \Rightarrow 2\sqrt{3}t = 1-t^2$ $\Rightarrow t^2 + 2\sqrt{3}t - 1 = 0 *$	E1 [3]				
(C) $t = \frac{-2\sqrt{3} \pm \sqrt{12+4}}{2} = 2 - 4$					
circumference < perimeter $\Rightarrow 2\pi < 24(2 - \sqrt{2})$	er M1				
$\Rightarrow 2\pi < 24(2 - \sqrt{3})$ $\Rightarrow \pi < 12(2 - \sqrt{3}) *$	E1	using positive root			
\rightarrow \cdots $-(\cdot$ $-)$	[4]	from exact working			

4754

Mark Scheme

June 20 June 20

(iii) $6\sqrt{2-\sqrt{3}} < \pi < 12(2-\sqrt{3})$ $\Rightarrow 3.106 < \pi < 3.215$	B1 B1 [2]	3.106, 3.215	-m

Comprehension

- $\frac{1}{4} \times [3+1+(-1)+(-2)] = 0.25 *$ 1.
- 2. (i) b is the benefit of shooting some soldiers from the other side while none of yours are shot. w is the benefit of having some of your own soldiers shot while not shooting any from the other side.

Since it is more beneficial to shoot some of the soldiers on the other side than it is to have your own soldiers shot, b > w. **E1**

- (ii) *c* is the benefit from mutual co-operation (i.e. no shooting). d is the benefit from mutual defection (soldiers on both sides are shot). With mutual co-operation people don't get shot, while they do with mutual defection. So c > d. **E1**
- $\frac{1 \times 2 + (-2) \times (n-2)}{n-2} = -1.999$ or equivalent (allow n, n+2) 3. M1, A1 n n = 6000 so you have played 6000 rounds. A1
- 4. No. The inequality on line 132, b + w < 2c, would not be satisfied since $6 + (-3) > 2 \times 1$. **M1** b + w < 2c and subst A1 No. 3 > 2 o.e.
- 5. (i)

Round	You	Opponent	Your	Opponent's
			score	score
1	С	D	-2	3
2	D	С	3	-2
3	С	D	-2	3
4	D	С	3	-2
5	С	D	-2	3
6	D	С	3	-2
7	С	D	-2	3
8	D	C	3	-2

M1 Cs and Ds in correct places, A1 C=-2, A1 D=3

(ii)
$$\frac{1}{2} \times [3 + (-2)] = 0.5$$

- 6. All scores are increased by two points per round (i)
 - (ii) The same player wins. No difference/change. The rank order of the players remains the same.B1
- 7. (i) They would agree to co-operate by spending less on advertising or by sharing equally. **B1**
 - **DB1** (ii) Increased market share (or more money or more customers).

DM1 A1ft their 3, -2

B1

M1, E1

MWWW. My Marks June 20. Painscioud.com

Sectio	n A		
1(i)	$\mathbf{M}^{-1} = \frac{1}{11} \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix}$	M1 A1 [2]	Dividing by determinant
(ii)	$\frac{1}{11} \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 49 \\ 100 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 198 \\ 253 \end{pmatrix}$	M1	Pre-multiplying by their inverse
	$\Rightarrow x = 18, y = 23$	A1(ft) A1(ft) [3]	
2	$z^{3} + z^{2} - 7z - 15 = (z - 3)(z^{2} + 4z + 5)$ $z^{2} + 4z + 5 = 0 \Rightarrow z = \frac{-4 \pm \sqrt{16 - 20}}{2}$ $\Rightarrow z = -2 + j \text{ and } z = -2 - j$	B1 M1 A1 M1	Show $z = 3$ is a root; may be implied Attempt to find quadratic factor Correct quadratic factor Use of quadratic formula or other valid method
	$\rightarrow 2 - 2 + j$ and $2 - 2 - j$	A1 [5]	Both solutions
3(i)		B1 B1 [2]	Asymptote at $x = -4$ Both branches correct
	$\frac{2}{x+4} = x+3 \Longrightarrow x^2 + 7x + 10 = 0$	M1	Attempt to find where graphs cross or valid attempt at solution using inequalities
(ii)	$\Rightarrow x = -2 \text{ or } x = -5$	A1	Correct intersections (both), or -2 and -5 identified as critical values
	$x \ge -2 \text{ or } -4 > x \ge -5$	A1 A2	$x \ge -2$ -4 > x \ge -5 s.c.
		[5]	A1 for $-4 \ge x \ge -5$ or $-4 > x > -5$
4	$2w-6w+3w = -\frac{1}{2}$ $\Rightarrow w = \frac{1}{2}$ $\Rightarrow \text{ roots are } 1, -3, \frac{3}{2}$	M1 A1	Use of sum of roots – can be implied
	$-\frac{q}{2} = \alpha\beta\gamma = -\frac{9}{2} \implies q = 9$	A1 M1	Correct roots seen Attempt to use relationships between roots
	$\frac{p}{2} = \alpha\beta + \alpha\gamma + \beta\gamma = -6 \implies p = -12$	A2(ft) [6]	s.c. M1 for other valid method One mark each for $p = -12$ and $q = 9$

4755 (FP1) Further Concepts for Advanced Mathematics

			mm n	
4755	Mark Scher	me	Attempt to form common denominator Correct cancelling	
5(i)	$\frac{1}{5r-2} - \frac{1}{5r+3} \equiv \frac{5r+3-5r+2}{(5r+3)(5r-2)}$	M1	Attempt to form common	CON
	$=\frac{5}{(5r+3)(5r-2)}$	A1	denominator Correct cancelling	~
(ii)		[2]		
	$\sum_{r=1}^{30} \frac{1}{(5r-2)(5r+3)} = \frac{1}{5} \sum_{r=1}^{30} \left[\frac{1}{(5r-2)} - \frac{1}{(5r+3)} \right]$			
	$1 \left[\left(\frac{1}{3} - \frac{1}{8}\right) + \left(\frac{1}{8} - \frac{1}{13}\right) + \left(\frac{1}{13} - \frac{1}{18}\right) + \dots \right]$	B1	First two terms in full	
	$=\frac{1}{5}\begin{bmatrix}\left(\frac{1}{3}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{18}\right)+\dots\\+\left(\frac{1}{5n-7}-\frac{1}{5n-2}\right)+\left(\frac{1}{5n-2}-\frac{1}{5n+3}\right)\end{bmatrix}$	B1	Last term in full	
	$=\frac{1}{5}\left[\frac{1}{3} - \frac{1}{5n+3}\right] = \frac{n}{3(5n+3)}$	M1	Attempt to cancel terms	
	$\begin{bmatrix} 5 \\ 3 \\ 5n+3 \end{bmatrix}$ $\begin{bmatrix} 3(5n+3) \\ 3(5n+3) \end{bmatrix}$	A1 [4]		
6	When $n = 1$, $\frac{1}{2}n(7n-1) = 3$, so true for $n = 1$	B1		
	Assume true for $n = k$	E1	Assume true for $n = k$	
	$3+10+17+\dots+(7k-4) = \frac{1}{2}k(7k-1)$			
	$\Rightarrow 3 + 10 + 17 + \dots + (7(k+1) - 4)$	M1	Add $(k+1)$ th term to both sides	
	$= \frac{1}{2}k(7k-1) + (7(k+1)-4)$			
	$= \frac{1}{2} \left[k \left(7k - 1 \right) + \left(14 \left(k + 1 \right) - 8 \right) \right]$			
	$= \frac{1}{2} \Big[7k^2 + 13k + 6 \Big]$	M1	Valid attempt to factorise	
	$=\frac{1}{2}(k+1)(7k+6)$			
	$=\frac{1}{2}(k+1)(7(k+1)-1)$ But this is the given result with $k+1$ replacing	A1	c.a.o. with correct simplification	
	k. Therefore if it is true for k it is true for $k + 1$.			
	Since it is true for $n = 1$, it is true for $n = 1, 2, 3$ and so true for all positive integers.	E1	Dependent on previous E1 and immediately previous A1	
		E1	Dependent on B1 and both previous E marks	
<u> </u>	!	[7]	Section A Total: 36	

4755	Mark Schem	e	Munu, mu hains June 20. June 2	
Section 7(i) (ii)	n B $(0, 10), (-2, 0), \left(\frac{5}{3}, 0\right)$ $x = \frac{-1}{2}, x = 1, y = \frac{3}{2}$	B1 B1 [3] B1 B1 B1 [3]		-0 ¹⁷
(iii)	Large positive x, $y \rightarrow \frac{3}{2}^{+}$ (e.g. consider $x = 100$) Large negative x, $y \rightarrow \frac{3}{2}^{-}$ (e.g. consider $x = -100$)	M1 B1 B1 [3]	Clear evidence of method required for full marks	
(iv)	Curve 3 branches of correct shape Asymptotes correct and labelled Intercepts correct and labelled	B1 B1 [3]		

			www.n. 12
4755	Mark Sche	ne	June 20. Trains
8 (i) (ii)	z - (4 + 2j) = 2 arg $(z - (4 + 2j)) = 0$	B1 B1 [3] B1 B1 B1 [3]	Multiple Multiple June 20.Multiple Multiple Sciout Count struct Count Count Sciout Count All correctRadius = 2 $z - (4+2j)$ or $z - 4 - 2j$ All correctHere is a structure count count count count count count count count count count countRadius = 2
(iii)	$a = 4 - 2\cos\frac{\pi}{4} = 4 - \sqrt{2}$ $b = 2 + 2\sin\frac{\pi}{4} = 2 + \sqrt{2}$	M1	Valid attempt to use trigonometry involving $\frac{\pi}{4}$, or coordinate geometry
	$\mathbf{P} = 4 - \sqrt{2} + \left(2 + \sqrt{2}\right)\mathbf{j}$	A2 [3]	1 mark for each of <i>a</i> and <i>b</i> s.c. A1 only for $a = 2.59$, $b = 3.41$
(iv)	$\frac{3}{4}\pi > \arg(z - (4 + 2j)) > 0$ and $ z - (4 + 2j) < 2$	B1 B1	$\arg(z - (4 + 2j)) > 0$ $\arg(z - (4 + 2j)) < \frac{3}{4}\pi$
		B1 [3]	z - (4 + 2j) < 2 Deduct one mark if only error is use of inclusive inequalities

55 Mark Schem	e	Mun, My June 20. Attempt to find MN or QM
(i) Matrix multiplication is associative	B1 [1]	
$\mathbf{MN} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	M1	Attempt to find MN or QM
$\Rightarrow \mathbf{MN} = \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix}$	A1	or $\mathbf{Q}\mathbf{M} = \begin{pmatrix} 0 & -2 \\ 3 & 0 \end{pmatrix}$
$\mathbf{QMN} = \begin{pmatrix} -2 & 0\\ 0 & 3 \end{pmatrix}$	A1(ft) [3]	
(ii) M is a stretch, factor 3 in the x direction, factor 2 in the y direction.	B1 B1	Stretch factor 3 in the x direction Stretch factor 2 in the y direction
N is a reflection in the line $y = x$.	B1	
Q is an anticlockwise rotation through 90° about the origin.	B1 [4]	
ii) $\begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -2 & -2 & -4 \\ 6 & 0 & 6 \end{pmatrix}$	M1 A1(ft)	Applying their QMN to points. Minus 1 each error to a minimum of 0.
$ \begin{array}{c} $	B2 [4]	Correct, labelled image points, minus 1 each error to a minimum of 0. Give B4 for correct diagram with no workings.
		Section B Total: 36 Total: 72

Mun. My Marians June 200. Mainscloud.com

1(a)(i) $\ln(1+x) = x - \frac{x^2}{2} + \frac{x}{2}$	$\frac{3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \dots$		
$\ln(1-x) = -x - \frac{x^2}{2} - $	$\frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} \dots$	B1	Series for $\ln(1-x)$ as far as x^5 s.o.i.
$\ln\left(\frac{1+x}{1-x}\right) = \ln(1+x) - \ln(1+x) - \ln(1+x) = \ln(1+x) - $	$\ln(1-x)$	M1	Seeing series subtracted
$= 2x + \frac{2x^3}{3} -$	$-\frac{2x^5}{5}$	A1	
Valid for $-1 < x < 1$		B1 4	Inequalities must be strict
(ii) $\frac{1+x}{1-x} = 3$			
$\Rightarrow 1 + x = 3(1 - x)$ $\Rightarrow 1 + x = 3 - 3x$ $\Rightarrow 4x = 2$		M1	Correct method of solution
$\Rightarrow x = \frac{1}{2}$		A1	B2 for $x = \frac{1}{2}$ stated
$\ln 3 \approx 2 \times \frac{2}{3} \times \left(\frac{1}{2}\right)^3 + \frac{2}{5} \times$	$\left(\frac{1}{2}\right)^5$	M1	Substituting their x into their series in (a)(i), even if outside range of validity.
$= 1 + \frac{1}{12} + \frac{1}{80}$ = 1.096 (3 d.p.)		A1 4	Series must have at least two terms SR : if >3 correct terms seen in (i), allow a better answer to 3 d.p. Must be 3 decimal places
(b)(i)	y /	4	
	0.5	G1 G1 G1	$r(0) = a, r(\pi/2) = a/2$ indicated Symmetry in $\theta = \pi/2$ Correct basic shape: flat at $\theta = \pi/2$, not vertical or horizontal at ends, no dimple Ignore beyond $0 \le \theta \le \pi$
(ii) $r + y = r + r \sin \theta$		M1	Using $y = r \sin \theta$
$= r(1 + \sin \theta) = \frac{1}{1}$ $= a$	$\frac{a}{+\sin\theta} \times (1 + \sin\theta)$	A1 (AG)	
$\Rightarrow r = a - y$			
$\Rightarrow x^2 + y^2 = (a - y)^2$		M1 A1	Using $r^2 = x^2 + y^2$ in $r + y = a$ Unsimplified
$\Rightarrow x^2 + y^2 = a^2 - 2ay$	$+y^{2}$	111	Champined
$\Rightarrow 2ay = a^2 - x^2$ $\Rightarrow y = \frac{a^2 - x^2}{2a}$		A1	A correct final answer, not spoiled
$\Rightarrow y = -2a$			
		5	16

4756 (FP2) Further Methods for Advanced Mathematics

4750			June 200. Nathschot	
4756	Mark Schem	16	June 200. Ans	NS.
2 (i)	$\mathbf{M} - \lambda \mathbf{I} = \begin{pmatrix} 3 - \lambda & 1 & -2 \\ 0 & -1 - \lambda & 0 \\ 2 & 0 & 1 - \lambda \end{pmatrix}$		400	HO.COM
	$\det(\mathbf{M} - \lambda \mathbf{I}) = (3 - \lambda)[(-1 - \lambda)(1 - \lambda)] + 2[2(-1 - \lambda)]$	M1	Attempt at det($\mathbf{M} - \lambda \mathbf{I}$) with all elements present. Allow sign errors	
	$= (3-\lambda)(\lambda^2-1) + 4(-1-\lambda)$	A1	Unsimplified. Allow signs reversed. Condone omission of $= 0$	
	$\Rightarrow \lambda^3 - 3\lambda^2 + 3\lambda + 7 = 0$ det M = -7	B1 3		
~ /	$f(\lambda) = \lambda^3 - 3\lambda^2 + 3\lambda + 7$ $f(-1) = -1 - 3 - 3 + 7 = 0 \implies -1 \text{ eigenvalue}$	B1	Showing -1 satisfies a correct	
	$f(\lambda) = (\lambda + 1)(\lambda^2 - 4\lambda + 7)$ $\lambda^2 - 4\lambda + 7 = (\lambda - 2)^2 + 3 \ge 3 \text{ so no real roots}$	M1	characteristic equation Obtaining quadratic factor	
	$(\mathbf{M} - \lambda \mathbf{I})\mathbf{s} = 0, \lambda = -1$	A1	www $(\mathbf{M} - \lambda \mathbf{I})\mathbf{s} = (\lambda)\mathbf{s}$ M0 below	
	$\Rightarrow \begin{pmatrix} 4 & 1 & -2 \\ 0 & 0 & 0 \\ 2 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$			
	$\Rightarrow 4x + y - 2z = 0$ 2x + 2z = 0	M1	Obtaining equations relating x , y and z	
	$\Rightarrow x = -z$ y = 2z - 4x = 2z + 4z = 6z	M1	Obtaining equations relating two variables to a third. Dep. on first M1	
	$\Rightarrow \mathbf{s} = \begin{pmatrix} -1\\ 6\\ 1 \end{pmatrix}$	A1	Or any non-zero multiple	
	$ \begin{pmatrix} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -0.1 \\ 0.6 \\ 0.1 \end{pmatrix} $	M1	Solution by any method, e.g. use of multiple of s , but M0 if s itself quoted without further work	
	$\Rightarrow x = 0.1, y = -0.6, z = -0.1$	A2 9	Give A1 if any two correct	
(iii)	C-H: a matrix satisfies its own characteristic equation	B1	Idea of $\lambda \leftrightarrow \mathbf{M}$	
	$\Rightarrow \mathbf{M}^{3} - 3\mathbf{M}^{2} + 3\mathbf{M} + 7\mathbf{I} = 0$ $\Rightarrow \mathbf{M}^{3} = 3\mathbf{M}^{2} - 3\mathbf{M} - 7\mathbf{I}$	B1 (AG)	Must be derived www. Condone omitted I	
	$\Rightarrow \mathbf{M}^2 = 3\mathbf{M} - 3\mathbf{I} - 7\mathbf{M}^{-1}$	M1	Multiplying by \mathbf{M}^{-1}	
	$\Rightarrow \mathbf{M}^{-1} = -\frac{1}{7}\mathbf{M}^2 + \frac{3}{7}\mathbf{M} - \frac{3}{7}\mathbf{I}$	A1 4	0.e.	
(iv)	$\mathbf{M}^{2} = \begin{pmatrix} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 2 & -8 \\ 0 & 1 & 0 \\ 8 & 2 & -3 \end{pmatrix}$	м1	Correct attempt to find \mathbf{M}^2	
	$-\frac{1}{7} \begin{pmatrix} 5 & 2 & -8 \\ 0 & 1 & 0 \\ 8 & 2 & -3 \end{pmatrix} + \frac{3}{7} \begin{pmatrix} 3 & 1 & -2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix} - \frac{3}{7} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	M1	Using their (iii)	
	$= \begin{pmatrix} \frac{1}{7} & \frac{1}{7} & \frac{2}{7} \\ 0 & -1 & 0 \\ -\frac{2}{7} & -\frac{2}{7} & \frac{3}{7} \end{pmatrix} \text{ or } \frac{1}{7} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -7 & 0 \\ -2 & -2 & 3 \end{pmatrix}$	A1	SC1 for answer without working	

4756	Mark Schem	ne	WWW. My Marins June 200. Tainscioud.	
	OR Matrix of cofactors: $\begin{pmatrix} -1 & 0 & 2 \\ -1 & 7 & 2 \\ -2 & 0 & -3 \end{pmatrix}$	M1	Finding at least four cofactors	OM
	Adjugate matrix $\begin{pmatrix} -1 & -1 & -2 \\ 0 & 7 & 0 \\ 2 & 2 & -3 \end{pmatrix}$: det $\mathbf{M} = -7$	M1	Transposing and dividing by determinant. Dep. on M1 above	
		3	19	
3(a)(i)		G1	Correct basic shape (positive gradient, through (0, 0))	
	$y = \arcsin x \Rightarrow \sin y = x$	1 M1	$\sin y =$ and attempt to diff. both sides	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \cos y$	A1	Or $\cos y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}$	A1	www. SC1 if quoted without working	
	Positive square root because gradient positive	B1	Dep. on graph of an increasing function	
		4 M1	arcsin function alone, or any sine	
(ii)	$\begin{bmatrix} 1 & 1 \\ 1 & dx = \begin{bmatrix} arcsin \\ x \end{bmatrix}^{1}$		substitution	
(**)	$\int_{0}^{1} \frac{1}{\sqrt{2-x^2}} dx = \left[\arcsin \frac{x}{\sqrt{2}} \right]_{0}^{1}$	A1	$\frac{x}{\sqrt{2}}$, or $\int 1 d\theta$ www without limits	
	$=\frac{\pi}{4}$	A1	Evaluated in terms of π	
	$C + iC = -i\theta + 1 - 3i\theta + 1 - 5i\theta$	3		
(0)	$C + jS = e^{j\theta} + \frac{1}{3}e^{3j\theta} + \frac{1}{9}e^{5j\theta} + \dots$ This is a geometric series	M1 M1	Forming $C + jS$ as a series of powers Identifying geometric series and attempting sum to infinity or to <i>n</i> terms	
	with first term $a = e^{j\theta}$, common ratio $r = \frac{1}{3}e^{2j\theta}$	A1	Correct a and r	
	Sum to infinity = $\frac{a}{1-r} = \frac{e^{j\theta}}{1-\frac{1}{3}e^{2j\theta}} \left(= \frac{3e^{j\theta}}{3-e^{2j\theta}}\right)$	A1	Sum to infinity	
	$=\frac{3e^{j\theta}}{3-e^{2j\theta}}\times\frac{3-e^{-2j\theta}}{3-e^{-2j\theta}}$	M1*	Multiplying numerator and denominator by $1-\frac{1}{3}e^{-2j\theta}$ o.e.	
	5-6 5-6		Or writing in terms of trig functions and realising the denominator	
	$= \frac{9e^{j\theta} - 3e^{-j\theta}}{9 - 3e^{-2j\theta} - 3e^{2j\theta} + 1}$	M1	Multiplying out numerator and denominator. Dep. on M1*	
	$= \frac{9(\cos\theta + j\sin\theta) - 3(\cos\theta - j\sin\theta)}{10 - 3(\cos 2\theta - j\sin 2\theta) - 3(\cos 2\theta + j\sin 2\theta)}$	M1	Valid attempt to express in terms of trig functions. If trig functions used from start, M1 for using the compound angle formulae and	

			Mun M
4756	Mark Schen	ne	June 200. Taring Taring
	$6\cos\theta + 12i\sin\theta$		Pythagoras Dep. on M1*
	$=\frac{6\cos\theta+12j\sin\theta}{10-6\cos2\theta}$	A1	
	$\Rightarrow C = \frac{6\cos\theta}{10 - 6\cos 2\theta}$	M1	Equating real and imaginary parts. Dep. on M1*
	$=\frac{3\cos\theta}{5-3\cos2\theta}$	A1 (AG)	
	$S = \frac{6\sin\theta}{5 - 3\cos 2\theta}$	A1	o.e.
		11	19
4 (i)	$\cosh u = \frac{e^u + e^{-u}}{2}$		
	$\Rightarrow 2 \cosh^2 u = \frac{e^{2u} + 2 + e^{-2u}}{2}$ $\Rightarrow 2 \cosh^2 u - 1 = \frac{e^{2u} + e^{-2u}}{2}$	B1	$(e^{u} + e^{-u})^{2} = e^{2u} + 2 + e^{-2u}$ $\cosh 2u = \frac{e^{2u} + e^{-2u}}{2}$
	$\Rightarrow 2\cosh^2 u - 1 = \frac{e^{2u} + e^{-2u}}{2}$	B1	$\cosh 2u = \frac{e^{2u} + e^{-2u}}{2}$
	$=\cosh 2u$	B1 (AG) 3	Completion www
(ii)	$x = \operatorname{arcsinh} y$ $\Rightarrow \sinh x = y$ $e^{x} - e^{-x}$	M1	Expressing win opportial form
	$\Rightarrow y = \frac{e^x - e^{-x}}{2}$ $\Rightarrow e^{2x} - 2x e^x - 1 = 0$	M1	Expressing y in exponential form $(\frac{1}{2}, -\text{must be correct})$
	$\Rightarrow e^{2x} - 2ye^{x} - 1 = 0$ $\Rightarrow (e^{x} - y)^{2} - y^{2} - 1 = 0$ $\Rightarrow (e^{x} - y)^{2} = y^{2} + 1$ $\Rightarrow e^{x} - y = \pm \sqrt{y^{2} + 1}$		
	$\Rightarrow e^{x} - y = \pm \sqrt{y^{2} + 1}$ $\Rightarrow e^{x} = y \pm \sqrt{y^{2} + 1}$	M1	Reaching e^x by quadratic formula or completing the square. Condone no \pm
	Take + because $e^x > 0$	B1	Or argument of ln must be positive
	$\Rightarrow x = \ln(y + \sqrt{y^2 + 1})$	A1 (AG)	Completion www but independent of B1
(iii)	$x = 2 \sinh u \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}u} = 2 \cosh u$	4 M1	$\frac{\mathrm{d}x}{\mathrm{d}u}$ and substituting for all elements
	$\int \sqrt{x^2 + 4} dx = \int \sqrt{4 \sinh^2 u + 4} \times 2 \cosh u du$	A1	Substituting for all elements correctly
	$= \int 4 \cosh^2 u du$ $= \int 2 \cosh 2u + 2 du$		
	-	M1	Simplifying to an integrable form
	$= \sinh 2u + 2u + c$ $= 2 \sinh u \cosh u + 2u + c$	A1	Any form, e.g. $\frac{1}{2}e^{2u} - \frac{1}{2}e^{-2u} + 2u$ Condone omission of $+c$ throughout
	$= x\sqrt{1 + \frac{x^2}{4}} + 2 \operatorname{arcsinh} \frac{x}{2} + c$	M1	Using double 'angle' formula and attempt to express $\cosh u$ in terms of x
	$= \frac{1}{2}x\sqrt{4+x^2} + 2 \operatorname{arcsinh} \frac{x}{2} + c$	A1 (AG)	Completion www
I	31	I	1

4756

cos OCP and sin

6

4756	Mark Schem		Une 200. The square
	[6	Inscloud
(iv)	$t^{2} + 2t + 5 = (t+1)^{2} + 4$ $\int_{-1}^{1} \sqrt{t^{2} + 2t + 5} dt = \int_{-1}^{1} \sqrt{(t+1)^{2} + 4} dt$ $= \int_{0}^{2} \sqrt{x^{2} + 4} dx$	B1	Completing the square
	$= \int_{0}^{2} \sqrt{x^{2} + 4} \mathrm{d}x$	M1 A1	Simplifying to an integrable form, by substituting $x = t + 1$ s.o.i. or complete alternative method Correct limits consistent with their method seen anywhere
	$= \left[\frac{1}{2}x\sqrt{4+x^2} + 2\arcsin h\frac{x}{2}\right]_0^2$		method seen anywhere
	$= \sqrt{8} + 2 \operatorname{arcsinh} 1$ = $2\sqrt{2} + 2 \ln(1 + \sqrt{2})$	M1	Using (iii) or otherwise reaching the result of integration, and using limits
	$= 2(\ln(1+\sqrt{2}) + \sqrt{2})$	A1 (AG) 5	Completion www. Condone $\sqrt{8}$ etc. 18
5 (i)	If $a = 1$, angle OCP = 45°		
	so P is $(1 - \cos 45^\circ, \sin 45^\circ)$ $\Rightarrow P(1 - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$	M1 A1 (AG)	Completion www
	OR Circle $(x - 1)^2 + y^2 = 1$, line $y = -x + 1$ $(x - 1)^2 + (-x + 1)^2 = 1$	M1	Complete algebraic method to find x
	$\Rightarrow x = 1 \pm \frac{1}{\sqrt{2}}$ and hence P	A1	
	$Q(1+\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$	B1 3	
· · · · · · · · · · · · · · · · · · ·	ļJ	<u> </u>	

(ii)
$$\cos OCP = \frac{a}{\sqrt{a^2 + 1}}$$

 $\sin OCP = \frac{1}{\sqrt{a^2 + 1}}$
P is $(a - a \cos OCP, a \sin OCP)$
 $\Rightarrow P\left(a - \frac{a^2}{\sqrt{a^2 + 1}}, \frac{a}{\sqrt{a^2 + 1}}\right)$
OR Circle $(x - a)^2 + y^2 = a^2$, line $y = -\frac{1}{a}x + 1$
 $(x - a)^2 + \left(-\frac{1}{a}x + 1\right)^2 = a^2$
 $\Rightarrow x = \frac{2a + \frac{2}{a} \pm \sqrt{\left(2a + \frac{2}{a}\right)^2 - 4\left(1 + \frac{1}{a^2}\right)}}{2\left(1 + \frac{1}{a^2}\right)}$
A1 M1 Complete algebraic method to find x
A1 Unsimplified

4756	Mark Schem	ıe	June 200. Tains cioud. Co
	$\Rightarrow x = a \pm \frac{a^2}{\sqrt{a^2 + 1}} \text{ and hence P}$ $Q\left(a + \frac{a^2}{\sqrt{a^2 + 1}}, -\frac{a}{\sqrt{a^2 + 1}}\right)$	A1	Joud. C.
	$Q\left(a + \frac{a^2}{\sqrt{a^2 + 1}}, -\frac{a}{\sqrt{a^2 + 1}}\right)$	B1 4	
	As $a \to \infty$, P $\to (0, 1)$ As $a \to -\infty$, y-coordinate of P $\to -1$ $\frac{a}{\sqrt{a^2 + 1}} \to \frac{a}{-a} = -1$ as $a \to -\infty$	G1 G1 G1ft B1 B1 M1 A1 8	Locus of P (1 st & 3 rd quadrants) through (0, 0) Locus of P terminates at (0, 1) Locus of P: fully correct shape Locus of Q (2 nd & 4 th quadrants: dotted) reflection of locus of P in y- axis Stated separately Stated Attempt to consider y as $a \rightarrow -\infty$ Completion www
(iv)	POQ = 90° Angle in semicircle Loci cross at 90°	B1 B1 B1 3	o.e. 18

4757 Further Pure 3

1 (i)	Putting $x = 0$, $-3y + 10z = 6$, $-4y - 2z = 8$ y = -2, $z = 0$	M1 A1	Finding coords of a point on the line or $(2, 0, -1), (1, -1, -\frac{1}{2})$ etc
	Direction is given by $\begin{pmatrix} 8 \\ -3 \\ 10 \end{pmatrix} \times \begin{pmatrix} 3 \\ -4 \\ -2 \end{pmatrix}$	M1	or finding a second point
	$= \begin{pmatrix} 46\\ 46\\ -23 \end{pmatrix}$	A1	
	Equation of <i>L</i> is $\mathbf{r} = \begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$	A1 ft 5	<i>Dependent on M1M1</i> Accept any form Condone omission of ' r ='
(ii)	$\overrightarrow{AB} \times \mathbf{d} = \begin{pmatrix} 7 \\ -14 \\ 4 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 15 \\ 42 \end{pmatrix} = \begin{bmatrix} 2 \\ 5 \\ 14 \end{bmatrix}$	M1 A2 ft	Evaluating $\overrightarrow{AB} \times \mathbf{d}$
	Distance is $\begin{bmatrix} \begin{pmatrix} -1\\12\\5 \end{bmatrix} - \begin{pmatrix} 0\\-2\\0 \end{bmatrix} \cdot \hat{\mathbf{n}} = \frac{\begin{pmatrix} -1\\14\\5 \end{pmatrix} \cdot \begin{pmatrix} 2\\5\\14 \end{pmatrix}}{\sqrt{2^2 + 5^2 + 14^2}}$	M1 A1 ft	Give A1 ft if just one error Appropriate scalar product Fully correct expression
	$=\frac{138}{15}=\frac{46}{5}=9.2$	A1 6	
(iii)	$\left \overrightarrow{AB} \times \mathbf{d} \right = \begin{pmatrix} 6\\15\\42 \end{pmatrix} = \sqrt{6^2 + 15^2 + 42^2}$	M1 M1	For $\left \overrightarrow{AB} \times \mathbf{d} \right $ Evaluating magnitude
	Distance is $\frac{ \vec{AB} \times \mathbf{d} }{ \mathbf{d} } = \frac{\sqrt{6^2 + 15^2 + 42^2}}{\sqrt{2^2 + 2^2 + 1^2}}$	M1 A1ft	In this part, M marks are dependent on previous M marks
	$=\frac{45}{3}=15$	A1 5	

4757	Mark Sche	me	June 20	MANSCIOUS COM
(iv)	At D, $\begin{pmatrix} -1\\12\\5 \end{pmatrix} + \lambda \begin{pmatrix} k+1\\-12\\-3 \end{pmatrix} = \begin{pmatrix} 6\\-2\\9 \end{pmatrix} + \mu \begin{pmatrix} 2\\2\\-1 \end{pmatrix}$ $12 - 12\lambda = -2 + 2\mu$ $5 - 3\lambda = 9 - \mu$ $\lambda = \frac{1}{3}, \mu = 5$	M1 A1 ft M1 M1	Condone use of same parameter on both sides Two equations for λ and μ Obtaining λ and μ (numerically) Give M1 for λ and μ in terms of k Equation for k	SUCI.COM
	$-1 + \frac{1}{3}(k+1) = 6 + 10$ k = 50 D is (6 + 2\mu, -2 + 2\mu, 9 - \mu) i.e. (16, 8, 4)	M1 A1 M1 A1 8	Obtaining coordinates of D	

Alternative solutions for Q1

111101110	itive solutions for QI		
1 (i)	e.g. $23x - 23y = 46$	M1A1	Eliminating one of <i>x</i> , <i>y</i> , <i>z</i>
	x = t, y = t - 2	M1	
	3t - 4(t - 2) - 2z = 8	A1 ft	
	$x = t, y = t - 2, z = -\frac{1}{2}t$	A1	
	· 2	5	
(ii)	$(-1+7\mu)$ (2))		
(11)	$\overrightarrow{PQ} = \begin{pmatrix} -1+7\mu\\12-14\mu\\5+4\mu \end{pmatrix} - \begin{pmatrix} 2\lambda\\-2+2\lambda\\-\lambda \end{pmatrix}$	M1	
	$PQ = 12 - 14\mu - 2 + 2\lambda$	A 1 A	
	$\left(5+4\mu\right)\left(-\lambda\right)$	A1 ft	
	$\overrightarrow{PQ} \cdot \mathbf{d} = \overrightarrow{PQ} \cdot \overrightarrow{AB} = 0$		
	$2(-1+7\mu-2\lambda)+2(14-14\mu-2\lambda)-(5+4\mu+\lambda)$	A1 ft	Two equations for λ and μ
	=0		
	$7(-1+7\mu-2\lambda) - 14(14-14\mu-2\lambda) + 4(5+4\mu+\lambda)$	M1	Expression for shortest distance
	= 0	4.1.0	
	$\lambda = \frac{27}{25}, \ \mu = \frac{47}{75}$	A1 ft	
	$ = (92)^2 (230)^2 (644)^2$	A1	
	$\left \overrightarrow{PQ} \right = \sqrt{\left(\frac{92}{75}\right)^2 + \left(\frac{230}{75}\right)^2 + \left(\frac{644}{75}\right)^2} = 9.2$	6	
(iii)	$\overrightarrow{\mathbf{AX}} \cdot \mathbf{d} = \begin{pmatrix} 6+2\lambda+1\\ -2+2\lambda-12\\ 9-\lambda-5 \end{pmatrix} \cdot \begin{pmatrix} 2\\ 2\\ -1 \end{pmatrix} = 0$		
	$\overrightarrow{\mathbf{AX}} \cdot \mathbf{d} = \begin{vmatrix} -2 + 2\lambda - 12 \\ -12 \end{vmatrix} \cdot \begin{vmatrix} 2 \\ 2 \end{vmatrix} = 0$	M1	
	$\begin{pmatrix} 9-\lambda-5 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$		
	$2(7+2\lambda) + 2(2\lambda - 14) - (4 - \lambda) = 0$	A1ft	
	$\lambda = 2$	Am	
	$\overrightarrow{\mathbf{AV}}$ 10	M1	
	$\overrightarrow{AX} = \begin{pmatrix} 11\\ -10\\ 2 \end{pmatrix}$	1111	
	$AX = \sqrt{11^2 + 10^2 + 2^2}$	M1	
	= 15	A1	
		5	

		mm.n.	12
4757 Mark Sc	cheme	June 20	This Classic
$(iv) \begin{bmatrix} 7\\ -14\\ 4 \end{bmatrix} \cdot \begin{bmatrix} k+1\\ -12\\ -3 \end{bmatrix} \times \begin{bmatrix} 2\\ 2\\ -1 \end{bmatrix} = 0$ $\begin{pmatrix} 7\\ -14\\ 4 \end{bmatrix} \cdot \begin{bmatrix} 18\\ k-5\\ 2k+26 \end{bmatrix} = 0$	M1	Appropriate scalar triple product equated to zero	OUT COM
$ \begin{bmatrix} -14 \\ 4 \end{bmatrix}^{2} \begin{bmatrix} k-3 \\ 2k+26 \end{bmatrix}^{2} \\ 126 - 14k + 70 + 8k + 104 = 0 \\ k = 50 $	M1 A1	Equation for <i>k</i>	
At D, $\begin{pmatrix} -1\\12\\5 \end{pmatrix}$ + $\lambda \begin{pmatrix} 51\\-12\\-3 \end{pmatrix} = \begin{pmatrix} 6\\-2\\9 \end{pmatrix} + \mu \begin{pmatrix} 2\\2\\-1 \end{pmatrix}$ -1+51 $\lambda = 6 + 2\mu$	M1	Condone use of same parameter on both sides	
$12 - 12\lambda = -2 + 2\mu$ $12 - 12\lambda = -2 + 2\mu$ $5 - 3\lambda = 9 - \mu$ $\lambda = \frac{1}{3}, \mu = 5$	A1 ft M1	Two equations for λ and μ Obtaining λ and μ	
D is $(6+2\mu, -2+2\mu, 9-\mu)$ i.e. (16, 8, 4)	M1 A1 8	Obtaining coordinates of D	

2(i)	$\frac{\partial z}{\partial x} = 3(x+y)^3 + 9x(x+y)^2 - 6x^2 + 24$	M1 A2	Partial differentiation Give A1 if just one minor error
	$\frac{\partial z}{\partial x} = 3(x+y)^3 + 9x(x+y)^2 - 6x^2 + 24$ $\frac{\partial z}{\partial y} = 9x(x+y)^2$	A1 4	
(ii)	At stationary points, $\frac{\partial z}{\partial x} = 0$ and $\frac{\partial z}{\partial y} = 0$	M1	
	$9x(x+y)^2 = 0 \implies x = 0 \text{ or } y = -x$		
	If $x = 0$ then $3y^3 + 24 = 0$	M1	
	y = -2; one stationary point is $(0, -2, 0)$	A1A1	
	If $y = -x$ then $-6x^2 + 24 = 0$	M1	
	$x = \pm 2$; stationary points are $(2, -2, 32)$	A1	
	and (-2, 2, -32)	A1 7	If A0A0, give A1 for $x = \pm 2$
(iii)	At P(1, -2, 19), $\frac{\partial z}{\partial x} = 24$, $\frac{\partial z}{\partial y} = 9$	B1	
	Normal line is $\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 19 \end{pmatrix} + \lambda \begin{pmatrix} 24 \\ 9 \\ -1 \end{pmatrix}$	M1 A1 ft 3	For normal vector (allow sign error) Condone omission of ' r ='
(iv)	$\delta z \approx \frac{\partial z}{\partial x} \delta x + \frac{\partial z}{\partial y} \delta y$	M1	
	$= 24\delta x + 9\delta y$	A1 ft	
	$3h \approx 24k + 9h$	M1	

4757	Mark Sch	eme	Munny June 20	Mathscioud.com
	$k \approx -\frac{1}{4}h$	A1 4		JUD.COM
	OR Tangent plane is $24x + 9y - z = -13$ $24(1+k) + 9(-2+h) - (19+3h) \approx -13$ $k \approx -\frac{1}{4}h$	M2 A1 ft A1		_
(v)	$\frac{\partial z}{\partial x} = 27$ and $\frac{\partial z}{\partial y} = 0$ $9x(x+y)^2 = 0 \implies x = 0$ or $y = -x$	M1	(Allow M1 for $\frac{\partial z}{\partial x} = -27$)	
	If $x = 0$ then $3y^3 + 24 = 27$	M1		
	y = 1, z = 0; point is (0, 1, 0)	A1		
	d = 0	A1		
	If $y = -x$ then $-6x^2 + 24 = 27$	M1		
	$x^2 = -\frac{1}{2}$; there are no other points	A1 6		

3(i)	$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 = \left[a(1+\cos\theta)\right]^2 + (a\sin\theta)^2$ $= a^2(2+2\cos\theta)$ $= 4a^2\cos^2\frac{1}{2}\theta$	M1 A1 M1	Forming $\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2$ Using half-angle formula
	$s = \int 2a \cos \frac{1}{2}\theta \mathrm{d}\theta$	M1	Integrating to obtain $k \sin \frac{1}{2}\theta$
	$= 4a\sin\frac{1}{2}\theta + C$ s = 0 when $\theta = 0 \implies C = 0$	A1 A1(AG)	Correctly obtained (+ <i>C</i> not needed) Dependent on all previous marks
(ii)	$\frac{dy}{dx} = \frac{a\sin\theta}{a(1+\cos\theta)}$ $= \frac{2\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta}{2a\cos^{2}\frac{1}{2}\theta} = \tan\frac{1}{2}\theta$ $\psi = \frac{1}{2}\theta, \text{ and so } s = 4a\sin\psi$	6 M1 M1 A1 A1	Using half-angle formulae
(iii)	$\rho = \frac{ds}{d\psi} = 4a\cos\psi$ $= 4a\cos\frac{1}{2}\theta$	4 M1 A1 ft A1(AG)	Differentiating intrinsic equation
	OR $\rho = \frac{\left(4a^2\cos^2\frac{1}{2}\theta\right)^{3/2}}{a(1+\cos\theta)(a\cos\theta) - (-a\sin\theta)(a\sin\theta)}$ $= \frac{8a^3\cos^3\frac{1}{2}\theta}{a^2(1+\cos\theta)} = \frac{8a^3\cos^3\frac{1}{2}\theta}{2a^2\cos^2\frac{1}{2}\theta} = 4a\cos\frac{1}{2}\theta$	3 M1 A1 ft A1(AG)	Correct expression for ρ or κ

			www.mym	MA ANSENS SHITS CLOUD, COM
4757	Mark Schei	me	June 20.	ths che
	When $\theta = \frac{2}{3}\pi$, $\psi = \frac{1}{3}\pi$, $x = a(\frac{2}{3}\pi + \frac{1}{2}\sqrt{3})$, $y = \frac{3}{2}a$ $\rho = 2a$ $\hat{\mathbf{n}} = \begin{pmatrix} -\sin\psi\\\cos\psi \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}\sqrt{3}\\\frac{1}{2} \end{pmatrix}$	B1 M1 A1	Obtaining a normal vector Correct unit normal (possibly in terms of θ)	·oud.com
	$\mathbf{c} = \begin{pmatrix} a(\frac{2}{3}\pi + \frac{1}{2}\sqrt{3})\\ \frac{3}{2}a \end{pmatrix} + 2a \begin{pmatrix} -\frac{1}{2}\sqrt{3}\\ \frac{1}{2} \end{pmatrix}$	M1		
	Centre of curvature is $\left(a\left(\frac{2}{3}\pi - \frac{1}{2}\sqrt{3}\right), \frac{5}{2}a\right)$	A1A1 6	Accept (1.23 <i>a</i> , 2.5 <i>a</i>)	
(v)	Curved surface area is $\int 2\pi y ds$	M1		
	$= \int_{0}^{\pi} 2\pi a(1 - \cos \theta) 2a \cos \frac{1}{2}\theta \mathrm{d}\theta$	A1 ft	Correct integral expression in any form (including limits; may be implied by later working)	
	$= \int_0^n 8\pi a^2 \sin^2 \frac{1}{2} \theta \cos \frac{1}{2} \theta \mathrm{d}\theta$	M1	Obtaining an integrable form	
	$= \left[\frac{16}{3} \pi a^2 \sin^3 \frac{1}{2} \theta \right]_0^{\pi}$	M1	Obtaining $k \sin^3 \frac{1}{2} \theta$ or equivalent	
	$=\frac{16}{3}\pi a^2$	A1 5		

4 (i)	In G, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$	M1	All powers of an element of order 6
	[or $5^2 = 4$, $5^3 = 6$, $5^4 = 2$, $5^5 = 3$, $5^6 = 1$]		
	In H , $5^2 = 7$, $5^3 = 17$, $5^4 = 13$, $5^5 = 11$, $5^6 = 1$		
	or $11^2 = 13$, $11^3 = 17$, $11^4 = 7$, $11^5 = 5$, $11^6 = 1$	A1	All powers correct in both groups
]		
	<i>G</i> has an element 3 (or 5) of order 6	B1	
	H has an element 5 (or 11) of order 6	B1 4	
		-	
	$\{1, 6\}$ $\{1, 2, 4\}$	B1 B2	<i>Ignore</i> {1} <i>and G</i> <i>Deduct 1 mark (from B1B2) for each</i>
(11)	$\{1, 2, 4\}$	Б2 3	proper subgroup in excess of two
(iii)	G H G H		
	$1 \leftrightarrow 1$ $1 \leftrightarrow 1$		
	$2 \leftrightarrow 7$ $2 \leftrightarrow 13$		
	$3 \leftrightarrow 5$ OR $3 \leftrightarrow 11$		
	$4 \leftrightarrow 13$ $4 \leftrightarrow 7$		
	$5 \leftrightarrow 11$ $5 \leftrightarrow 5$		
	$6 \leftrightarrow 17$ $6 \leftrightarrow 17$	B4	Give B3 for 4 correct, B2 for 3
		4	correct, B1 for 2 correct
	ad(1) = a(3) = 1	M1	Evaluating e.g. ad(1) (one case
(iv)	ad(2) = a(2) = 3		sufficient; intermediate value must be
	ad(3) = a(1) = 2, so $ad = c$	A 1	shown)
	da(1) = d(2) = 2	A1	For ad = c correctly shown Evaluating e.g. da(1) <i>(one case</i>
	da(1) = d(2) = 2 da(2) = d(3) = 1	M1	sufficient; no need for any working)

4757						Mar	k Sche	me	June 20.	ANT ANSIIS CIOUD COM
	da(3) = d(1)) = 3,	so da :	= f				A1 4		SUC COM
(v)	S is not abelian; G is abelian							B1 1	or S has 3 elements of order 2; G has 1 element of order 2 or S is not cyclic etc	
(vi)	Element Order	a 3	b 3	c 2	d 2	e 1	f 2	B4 4	Give B3 for 5 correct, B2 for 3 correct, B1 for 1 correct	
(vii)	{e, c} {e, d} {e, f} {e, a, b}							B1 B1 B1 B1 4	Ignore { e } and <i>S</i> If more than 4 proper subgroups are given, deduct 1 mark for each proper subgroup in excess of 4	

Pre-multiplication by transition matrix

5 (i)	$\mathbf{P} = \begin{pmatrix} 0 & 0.1 & 0 & 0.3 \\ 0.7 & 0.8 & 0 & 0.6 \\ 0.1 & 0 & 1 & 0.1 \\ 0.2 & 0.1 & 0 & 0 \end{pmatrix}$	B2 2	Give B1 for two columns correct
(ii)	$\mathbf{P}^{13} \begin{pmatrix} 0.6\\0.4\\0\\0 \end{pmatrix} = \begin{pmatrix} 0.0810\\0.5684\\0.2760\\0.0746 \end{pmatrix}$	M1 A2 3	Using P ¹³ (or P ¹⁴) Give A1 for 2 probabilities correct (Max A1 if not at least 3dp) Tolerance ±0.0001
(iii)	$\begin{array}{l} 0.5684 \times 0.8 + 0.2760 \\ = 0.731 \end{array}$	M1M1 A1 ft 3	For 0.5684×0.8 and 0.2760 Accept 0.73 to 0.7312
(iv)	$\mathbf{P}^{30} \begin{pmatrix} 0.6\\ 0.4\\ 0\\ 0 \end{pmatrix} = \begin{pmatrix} .\\ .\\ 0.4996\\ . \end{pmatrix}, \mathbf{P}^{31} \begin{pmatrix} 0.6\\ 0.4\\ 0\\ 0 \end{pmatrix} = \begin{pmatrix} .\\ .\\ 0.5103\\ . \end{pmatrix}$	M1 A1	Finding P(C) for some powers of P For identifying \mathbf{P}^{31}
	Level 32	A1 3	
(v)	Expected number of levels including the next	M1	For 1/(1-0.8) or 0.8/(1-0.8)
	change of location is $\frac{1}{0.2} = 5$	A1	For 5 or 4
	Expected number of further levels in B is 4	A1 3	For 4 as final answer

4757	Mark Sche	me	Munu Munu Munu Munu Munu Munu Munu Munu	
	$\mathbf{Q} = \begin{pmatrix} 0 & 0.1 & 0 & 0.3 \\ 0.7 & 0.8 & 0 & 0.6 \\ 0.1 & 0 & 0.9 & 0.1 \\ 0.2 & 0.1 & 0.1 & 0 \end{pmatrix}$ $\mathbf{Q}^{n} \rightarrow \begin{pmatrix} 0.0916 & 0.0916 & 0.0916 & 0.0916 \\ 0.6183 & 0.6183 & 0.6183 & 0.6183 \\ 0.1908 & 0.1908 & 0.1908 & 0.1908 \\ 0.0992 & 0.0992 & 0.0992 & 0.0992 \end{pmatrix}$ A: 0.0916 B: 0.6183 C: 0.1908 D: 0.0992	B1 M1 M1 A2 5	Can be implied Evaluating powers of Q or Obtaining (at least) 3 equations from Qp = p Limiting matrix with equal columns or Solving to obtain one equilib prob or M2 for other complete method Give A1 for two correct (Max A1 if not at least 3dp) Tolerance ±0.0001	OR
(vii)	$ \begin{pmatrix} 0 & 0.1 & a & 0.3 \\ 0.7 & 0.8 & b & 0.6 \\ 0.1 & 0 & c & 0.1 \\ 0.2 & 0.1 & d & 0 \end{pmatrix} \begin{pmatrix} 0.11 \\ 0.75 \\ 0.04 \\ 0.1 \end{pmatrix} = \begin{pmatrix} 0.11 \\ 0.75 \\ 0.04 \\ 0.1 \end{pmatrix} $ $ 0.075 + 0.04a + 0.03 = 0.11 $	M1 A1 M1	Transition matrix and $\begin{pmatrix} 0.11 \\ 0.75 \\ 0.04 \\ 0.1 \end{pmatrix}$	
	$\begin{array}{l} 0.077 + 0.6 + 0.04b + 0.06 = 0.75\\ 0.011 + 0.04c + 0.01 = 0.04\\ 0.022 + 0.075 + 0.04d = 0.1\\ a = 0.125, \ b = 0.325, \ c = 0.475, \ d = 0.075 \end{array}$	A2 5	Forming at least one equation or $a + b + c + d = 1$ Give A1 for two correct	
Post-ma 5 (i)	$\mathbf{P} = \begin{pmatrix} 0 & 0.7 & 0.1 & 0.2 \\ 0.1 & 0.8 & 0 & 0.1 \\ 0 & 0 & 1 & 0 \\ 0.3 & 0.6 & 0.1 & 0 \end{pmatrix}$	B2 2	Give B1 for two rows correct	
(ii)	$(0.6 0.4 0 0) \mathbf{P}^{13}$	M1	Using \mathbf{P}^{13} (or \mathbf{P}^{14})	

	$\left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0.3 & 0.6 & 0.1 & 0 \end{array}\right)$	2	
(ii)	$ \begin{pmatrix} 0.6 & 0.4 & 0 & 0 \end{pmatrix} \mathbf{P}^{13} = \begin{pmatrix} 0.0810 & 0.5684 & 0.2760 & 0.0746 \end{pmatrix} $	M1 A2 3	Using P ¹³ (or P ¹⁴) Give A1 for 2 probabilities correct (Max A1 if not at least 3dp) Tolerance ±0.0001
(iii)	$\begin{array}{l} 0.5684 \times 0.8 + 0.2760 \\ = 0.731 \end{array}$	M1M1 A1 ft 3	For 0.5684×0.8 and 0.2760 Accept 0.73 to 0.7312
(iv)	$(0.6 0.4 0 0) \mathbf{P}^{30} = (0.4996 .)$ $(0.6 0.4 0 0) \mathbf{P}^{31} = (0.5103 .)$ Level 32	M1 A1 A1 3	Finding P(C) for some powers of P For identifying \mathbf{P}^{31}
(v)	Expected number of levels including the next change of location is $\frac{1}{0.2} = 5$ Expected number of further levels in B is 4	M1 A1 A1 3	For $1/(1-0.8)$ or $0.8/(1-0.8)$ For 5 or 4 For 4 as final answer

			www.my
4757	Mark Schei	me	June 20 Party St
(vi)	$\mathbf{Q} = \begin{pmatrix} 0 & 0.7 & 0.1 & 0.2 \\ 0.1 & 0.8 & 0 & 0.1 \\ 0 & 0 & 0.9 & 0.1 \\ 0.3 & 0.6 & 0.1 & 0 \end{pmatrix}$	B1	WWW, My June 20. Can be implied
	$\mathbf{Q}^{n} \rightarrow \begin{pmatrix} 0.0916 & 0.6183 & 0.1908 & 0.0992 \\ 0.0916 & 0.6183 & 0.1908 & 0.0992 \\ 0.0916 & 0.6183 & 0.1908 & 0.0992 \\ \end{pmatrix}$	M1	Evaluating powers of Q or Obtaining (at least) 3 equations from pQ = p
	0.0916 0.6183 0.1908 0.0992	M1	Limiting matrix with equal rows or Solving to obtain one equilib prob or M2 for other complete method
	A: 0.0916 B: 0.6183 C: 0.1908 D: 0.0992	A2 5	Give A1 for two correct (Max A1 if not at least 3dp) Tolerance ±0.0001
(vii)	$ (0.11 0.75 0.04 0.1) \begin{pmatrix} 0 & 0.7 & 0.1 & 0.2 \\ 0.1 & 0.8 & 0 & 0.1 \\ a & b & c & d \\ 0.3 & 0.6 & 0.1 & 0 \end{pmatrix} $	M1	Transition matrix and (0.11 0.75 0.04 0.1)
ļ	= (0.11 0.75 0.04 0.1)	A1	
	0.075 + 0.04a + 0.03 = 0.11 0.077 + 0.6 + 0.04b + 0.06 = 0.75 0.011 + 0.04c + 0.01 = 0.04	M1	Forming at least one equation
	0.022 + 0.075 + 0.04d = 0.1 a = 0.125, b = 0.325, c = 0.475, d = 0.075	A2 5	or $a + b + c + d = 1$ Give A1 for two correct

4758 Differential Equations

	2		
1(i)	$\alpha^2 + 25 = 0$	M1	Auxiliary equation
	$\alpha = \pm 5$	Al E1	
	$CF y = A\cos 5t + B\sin 5t$	F1	CF for their roots
	PI $y = at \cos 5t + bt \sin 5t$	B1	
	$\dot{y} = a\cos 5t - 5at\sin 5t + b\sin 5t + 5bt\cos 5t$		
	$\ddot{y} = -10a\sin 5t - 25at\cos 5t + 10b\cos 5t - 25bt\sin 5t$	M1	Differentiate twice
	In DE $\Rightarrow 10b\cos 5t - 10a\sin 5t = 20\cos 5t$	M1	Substitute and compare
			coefficients
	$\Rightarrow b = 2, a = 0$	A1	
	PI $y = 2t \sin 5t$		
	$GS y = 2t\sin 5t + A\cos 5t + B\sin 5t$	F1	
		8	
(ii)	$t = 0, y = 1 \Longrightarrow A = 1$	B1	From correct GS
	$\dot{y} = 2\sin 5t + 10t\cos 5t - 5A\sin 5t + 5B\cos 5t$	M1	Differentiate
	$t = 0, \dot{y} = 0 \Longrightarrow B = 0$	M1	Use condition on \dot{y}
	$y = 2t\sin 5t + \cos 5t$	A1	
		4	L.
(iii)	Curve through (0, 1)	B1	
	Curve with zero gradient at (0, 1)	B1	
	Oscillations	B1	
	Oscillations with increasing amplitude	B1	
		4	
(iv)	$y = 2\sin 5t$, $\dot{y} = 10\cos 5t$, $\ddot{y} = -50\sin 5t$		
	$\ddot{y} + 2\dot{y} + 25y = -50\sin 5t + 20\cos 5t + 50\sin 5t$	M1	Substitute into DE
	$= 20\cos 5t$	E1	
	$\alpha^2 + 2\alpha + 25 = 0$	M1	Auxiliary equation
	$\alpha = -1 \pm i\sqrt{24}$	A1	
	CF $e^{-t} \left(C \cos \sqrt{24}t + D \sin \sqrt{24}t \right)$	F1	CF for their complex roots
	GS $y = 2\sin 5t + e^{-t} (C\cos\sqrt{24}t + D\sin\sqrt{24}t)$	F1	Their PI + their CF with two
	$GS \ y = 2 \sin 3i + c \ (c \cos \sqrt{24i} + D \sin \sqrt{24i})$	1 1	
		6	arbitrary constants
		0	
(v)	Oscillations of amplitude 2	B1	or bounded oscillations; or both oscillate
	Compared to unbounded oscillations in first model	B1	oseniale
	compared to unoounded opermations in mot model	DI	or one bounded, one unbounded
		2	
	$dy = 3 \sin x$		
2(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{3}{x}y = \frac{\sin x}{x^2}$	M1	Rearrange
	$I = e^{\int \frac{3}{x} dx}$	3.64	
	$I = e^{-x}$	M1	Attempting integrating factor
	$=e^{3\ln x}$	A1	

$=x^{3}$
$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{3}y\right) = x\sin x$
$x^{3}y = \int x \sin x \mathrm{d}x = -x \cos x + \int \cos x \mathrm{d}x$
$= -\cos r + \sin r + 4$

$$y = \frac{-\cos x + \sin x + A}{x^3}$$

WWWW. MY MAN MISHS June 20. Prinscioud.com A1 Correct and simplified Multiply and recognise derivative M1 M1 Integrate A1 A1 All correct F1 Must include constant

	x	9	
		,	
(ii)	$y \approx \frac{-x(1-\frac{1}{2}x^2) + x - \frac{1}{6}x^3 + A}{x^3}$	M1	Substitute given approximations
		F1	
	$=\frac{1}{3}+\frac{A}{x^3}$	M1	Use finite limit to deduce A
	A = 0	A1	
	$y = \frac{\sin x - x \cos x}{x^3}$	B1	Correct particular solution
	$\lim_{x \to 0} y = \frac{1}{3}$	B1	Correct limit
		6	
(iii)	$y = 0 \implies \sin x - x \cos x = 0$	M1	Equate to zero and attempt to get
	$\Rightarrow \tan x = x$	E1	tanx Convincingly shown
	\rightarrow $\tan x - x$	2	e .
(iv)	$\frac{dy}{dx} + \frac{3}{x}y = \frac{1}{x} - \frac{1}{6}x$, multiply by $I = x^3$	M1	Rearrange and multiply by IF
		B1	Same IF as in (i) or correct IF
	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{r}}\left(x^{3}y\right) = x^{2} - \frac{1}{6}x^{4}$	A1	Recognise derivative and RHS
			correct
	$x^{3}y = \frac{1}{3}x^{3} - \frac{1}{30}x^{5} + B$	M1	Integrate
	$y = \frac{1}{3} - \frac{1}{30}x^2 + \frac{B}{x^3}$	A1	c.a.o
	Finite limit $\Rightarrow B = 0$	M1	Use condition to find constant
	$\lim_{x \to 0} y = \frac{1}{3}$	E1	Show correct limit (or same limit
		7	as (ii))
		,	
3(a)(i)	$2\alpha + 4 = 0 \implies \alpha = -2$	M1	Find root of auxiliary equation
	$CF Ae^{-2t}$	A1	
	$PI I = a\cos 2t + b\sin 2t$	B1	
	$\dot{I} = -2a\sin 2t + 2b\cos 2t$	M1	Differentiate
	$-4a\sin 2t + 4b\cos 2t + 4a\cos 2t + 4b\sin 2t = 3\cos 2t$	M1	Substitute
	$-4a+4b=0, 4b+4a=3 \implies a=b=\frac{3}{8}$	M1	Compare coefficients and solve

4758	Mark Scheme		Their PI + their CF with one
			Sans Lot Misch
	$PI I = \frac{3}{8}(\cos 2t + \sin 2t)$	A1	Sud.
	GS $I = Ae^{-2t} + \frac{3}{8}(\cos 2t + \sin 2t)$	F1	Their PI + their CF with one
		8	arbitrary constant
(ii)	$t = 0, l = 0 \implies 0 = A + \frac{3}{8} \implies A = -\frac{3}{8}$	M1	Use condition
	$I = \frac{3}{8} (\cos 2t + \sin 2t - e^{-2t})$	A1	c.a.o
	δ	2	
(iii)	For large t , $I \approx \frac{3}{8}(\cos 2t + \sin 2t)$	M1	Consider behaviour for large <i>t</i>
			(may be implied)
	Amplitude = $\frac{3}{8}\sqrt{1^2 + 1^2} = \frac{3}{8}\sqrt{2}$	A1	
	Curve with oscillations with constant amplitude Their amplitude clearly indicated	B1 B1	
	Then amplitude clearly indicated	ы 4	
(b)(i)	(A) $t = 0, y = 0 \implies \frac{dy}{dt} = 2 - 2(0) + e^0$	M1	Substitute into DE
	dt Gradient =3	A1	
	(B) At stationary point, $\frac{dy}{dt} = 0$, $y = \frac{9}{8}$	M1	Substitute into DE
	$\Rightarrow 0 = 2 - 2\left(\frac{9}{8}\right) + e^{-t} \Rightarrow e^{-t} = \frac{1}{4}$	M1	Solve for <i>t</i>
	$\Rightarrow t = \ln 4$	A1	
	(C) $\frac{dy}{dt} \to 0, e^{-t} \to 0$	M1	Substitute into DE
	Giving $0 = 2 - 2y + 0$, so $y \rightarrow 1$	A1	
		7	
(ii)	Curve through origin with positive gradient	B1	
	With maximum at $(\ln 4, \frac{9}{8})$	B1	Follow their In4
	With $y \to 1$ as $x \to \infty$	B1 3	Follow their (<i>C</i>)
4(i)	$\ddot{x} = 7\dot{x} + 6\dot{y} - 6e^{-3t}$	M1	Differentiate
	$= 7\dot{x} + 6(-12x - 10y + 5\sin t) - 6e^{-3t}$	M1	Substitute for \dot{y}
	$y = \frac{1}{6} \left(\dot{x} - 7x - 2e^{-3t} \right)$	M1	y in terms of x, \dot{x} , t
	$\ddot{x} = 7\dot{x} - 72x - 10(\dot{x} - 7x - 2e^{-3t}) + 30\sin t - 6e^{-3t}$	M1	Substitute for <i>y</i>
	$\ddot{x} + 3\dot{x} + 2x = 14e^{-3t} + 30\sin t$	E1	Complete argument
		5	· · ·
(ii)	$x = ae^{-3t} - 9\cos t + 3\sin t$		
	$\dot{x} = -3ae^{-3t} + 9\sin t + 3\cos t$		
	$\ddot{x} = 9ae^{-3t} + 9\cos t - 3\sin t$ In DE gives	M1 M1	Differentiate twice

In DE gives $9ae^{-3t} + 9\cos t - 3\sin t$ $+3(-3ae^{-3t}+9\sin t+3\cos t)$

44

- M1
- M1 Substitute

 $+2(ae^{-3t}-9\cos t+3\sin t)$

	$=2ae^{-3t}+30\sin t$		
	So PI with $2a = 14$	E1	Correct form shown
	$\Rightarrow a = 7$	A1	
	AE $\alpha^2 + 3\alpha + 2 = 0$	M1	Auxiliary equation
	$\alpha = -1, -2$	A1	
	$CF Ae^{-t} + Be^{-2t}$	F1	CF for their roots
	GS $x = Ae^{-t} + Be^{-2t} + 7e^{-3t} - 9\cos t + 3\sin t$	F1	Their PI + their CF with two
			arbitrary constants
		8	3
(iii)	$x = \frac{1}{6}(\dot{x} - 7x - 2e^{-3t})$	M1	y in terms of x, \dot{x} , t
	$\dot{x} = -Ae^{-t} - 2Be^{-2t} - 21e^{-3t} + 9\sin t + 3\cos t$	M1	Differentiate GS for <i>x</i>
		F1	Follow their GS
	$y = -\frac{4}{3}Ae^{-t} - \frac{3}{2}Be^{-2t} - 12e^{-3t} + 11\cos t - 2\sin t$	A1	c.a.o
		4	ł
(iv)	$x \approx 3\sin t - 9\cos t$	B1	Follow their <i>x</i>
	$y \approx 11\cos t - 2\sin t$	B1	Follow their <i>y</i>
	$x = y \implies 11\cos t - 2\sin t \approx 3\sin t - 9\cos t$	M1	Equate
	$\Rightarrow 20\cos t \approx 5\sin t \Rightarrow \tan t \approx 4$	A1	Complete argument
		2	1
(v)	Amplitude of $x \approx \sqrt{3^2 + 9^2} = 3\sqrt{10}$	M1	Attempt both amplitudes
	Amplitude of $y \approx \sqrt{11^2 + 2^2} = 5\sqrt{5}$	A1	One correct
	Ratio is $\frac{5}{6}\sqrt{2}$	A1	c.a.o (accept reciprocal)
	0	3	
			-

MWWW. My Marks Marks

4761 Mechanics 1

Q1		Mark	Comment	Sub
(i)	$0.5 \times 8 \times 10 = 40 \text{ m}$	M1	Attempt to find whole area or If <i>suvat</i> used in 2 parts, accept any <i>t</i> value $0 \le t \le 8$ for max.	
		A1	c.a.o.	
				2
(ii)	$0.5 \times (T-8) = 10$	M1	$0.5 \times 5 \times k = 10$ seen. Accept ± 5 and ± 10 only. If <i>suvat</i> used need whole area; if in 2 parts, accept any <i>t</i> value $8 \le t \le T$ for min.	
		B1	Attempt to use $k = T - 8$.	
	T = 12	A1	c.a.o. [Award 3 if $T = 12$ seen]	3
(iii)	40 - 10 = 30 m	B1	ft their 40.	5
(111)		51		1
		6		
•			C (a 1

Q 2		Mark	Comment	Sub
(i)	$\sqrt{10^2 + 24^2} = 26 \text{ so } 26 \text{ N}$	B1		
	$\arctan \frac{10}{24}$	M1	Using arctan or equiv. Accept $\arctan \frac{24}{10}$ or equiv.	
	= 22.619 so 22.6° (3 s.f.)	A1	Accept 157.4°.	3
(ii)	$\mathbf{W} = -w\mathbf{j}$	B1	Accept $\begin{pmatrix} 0 \\ -w \end{pmatrix}$ and $\begin{pmatrix} 0 \\ -wj \end{pmatrix}$	
				1
(iii)	$\mathbf{T}_1 + \mathbf{T}_2 + \mathbf{W} = 0$	M1	Accept in any form and recovery from $W = wj$. Award if not explicit and part (ii) and both <i>k</i> and <i>w</i> correct.	
	k = -10	B1	Accept from wrong working.	
	<i>w</i> = 34	B1	Accept from wrong working but not -34 .	
			[Accept –10i or 34j but not both]	
				3
		7		

				www.m. M.	
4761		Mark Sche	me	WWWW. MYMA June 20. Marnsciol Sub	ths.
Q 3		Mark	Comment	Sub	10 ⁷ .CO.
(i)	The line is not straight	B1	Any valid comment	1	m
(ii)	$a = 3 - \frac{6t}{8}$	M1	Attempt to differentiate. Accept 1 to correct but not $3 - \frac{3t}{8}$.	erm	
	a(4) = 0 The sprinter has reached a steady speed	F1 E1	Accept 'stopped accelerating' but n just $a = 0$. Do not ft $a(4) \neq 0$.	not 3	
(iii)	We require $\int_{1}^{4} \left(3t - \frac{3t^2}{8}\right) dt$	M1	Integrating. Neglect limits.		
	$= \left[\frac{3t^2}{2} - \frac{t^3}{8}\right]_1^4$	A1	One term correct. Neglect limits.		
	$=(24-8)-\left(\frac{3}{2}-\frac{1}{8}\right)$	M1	Correct limits subst in integral. Subtraction seen. If arb constant used, evaluated to g s = 0 when $t = 1$ and then sub $t = 4$		
	$= 14\frac{5}{8} m (14.625 m)$	A1	 c.a.o. Any form. [If trapezium rule used M1 use of rule (must be clear meth and at least two regions) A1 correctly applied M1 At least 6 regions used A1 Answer correct to at least 2 s.f. 	od)]	
		8		4	

			mm	
4761	Μ	eme .	www.mymc June 20.	
Q 4		Mark	Comment	Sub
(i)	$32\cos\alpha t$	B1		1
(ii)	$32 \cos \alpha \times 5 = 44.8$ so $160 \cos \alpha = 44.8$ and $\cos \alpha = 0.28$	M1 E1	ft their <i>x</i> . Shown. Must see some working e.g $\cos\theta = 44.8 \div 160$ or $160 \cos\theta = 44.8$. If $32 \times 0.28 \times 5 = 44.8$ seen then the needs a statement that 'hence $\cos\theta = 0.28$ '.	is 2
(iii)	$\sin\alpha = 0.96$	B1	Need not be explicit e.g. accept sin(73.73) seen.	2
	either $0 = (32 \times 0.96)^2 - 2 \times 9.8 \times s$	M1 A1	Allow use of ' u ' = 32, $g = \pm (10, 9.8, 9.81)$. Correct substitution.	
	<i>s</i> = 48.1488 so 48.1 m (3 s. f.) or Time to max height is given by	A1 A1	c.a.o.	
	$32 \times 0.96 - 9.8 T = 0$ so $T = 3.1349$	B1	Could use ¹ / ₂ total time of flight to the horizontal.	he
	$y = 32 \times 0.96 t - 4.9 t^2$	M1	Allow use of 'u' = 32, $g = \pm (10, 9.8, 9.81)$ May use $s = \frac{(u+v)}{2}t$.	
	putting $t = T$, $y = 48.1488$ so 48.1 m (3 s. f.)	A1	c.a.o.	
		7		4

Q 5		Mark	Comment	Sub
(i)	$\mathbf{v} = \mathbf{i} + (3 - 2t)\mathbf{j}$	M1	Differentiating r . Allow 1 error. Could use const accn.	
		A1		
	$\mathbf{v}(4) = \mathbf{i} - 5\mathbf{j}$	F1	Do not award if $\sqrt{26}$ is given as vel (accept if v given and <i>v</i> given as well called speed or magnitude).	
				3
(ii)	$\mathbf{a} = -2\mathbf{j}$	B1	Diff v. ft their v. Award if $-2j$ seen & isw.	
	Using N2L $\mathbf{F} = 1.5 \times (-2\mathbf{j})$	M1	Award for $1.5 \times (\pm \mathbf{a} \text{ or } a)$ seen.	
	so –3 j N	A1	c.a.o. Do not award if final answer is not correct.	
			[Award M1 A1 for $-3j$ WW]	3
(iii)	$x=2+t$ and $y=3t-t^2$ Substitute $t=x-2$	B1	Must have both but may be implied.	5
	so $y = 3(x-2) - (x-2)^2$	B1	c.a.o. isw. Must see the form $y = \dots$	
	[=(x-2)(5-x)]	21		
				2
		8		

				"In	
4761	Λ	lark Sche	eme June	20.	
Q 6		Mark	Comment	Sub	
(i)	Up the plane $T - 4g\sin 25 = 0$	M1	Resolving parallel to the plane. If any other direction used, all forces must be present. Accept $s \leftrightarrow c$. Allow use of <i>m</i> . No extra forces.	W. My Mg 20. Sub	
	<i>T</i> = 16.5666 so 16.6 N (3 s. f.)	A1		2	
(ii)	Down the plane, $(4+m)g \sin 25 - 50 = 0$	M1	No extra forces. Must attempt resolution in at least 1 term. Accept $s \leftrightarrow c$. Accept Mg sin25. Accept use of mass.		
	m = 8.0724 so 8.07 (3 s. f.)	A1 A1	Accept Mgsin25		
				3	
(iii)	Diagram	B1	Any 3 of weight, friction normal reaction and <i>P</i> present in approx correct directions with arrows.		
		B1	All forces present with suitable directions, labels and arrows. Accept <i>W</i> , <i>m</i> g, 4g and 39.2.	2	
(iv)	Resolving up the plane	M1	Or resolving parallel to the plane. All forces must be present. Accept $s \leftrightarrow c$. Allow use of <i>m</i> . At least one resolution attempted and accept wrong angles. Allow sign errors.	2	
		B1	$P \cos 15$ term correct. Allow sign error.		
	$P\cos 15 - 20 - 4g\sin 25 = 0$	B1	Both resolutions correct. Weight used. Allow sign errors. ft use of $P \sin 15$.		
		A1	All correct but ft use of $P \sin 15$.		
	P = 37.8565 so 37.9 N (3 s. f.)	A1		5	
(v)	Resolving perpendicular to the plane	M1	May use other directions. All forces present. No extras. Allow $s \leftrightarrow c$. Weight not mass used. Both resolutions attempted. Allow sign	5	
	$R + P\sin 15 - 4g\cos 25 = 0$	B1	errors. Both resolutions correct. Allow sign errors. Allow use of <i>P</i> cos15 if <i>P</i> sin15 used in (iv).		
		F1	All correct. Only ft their <i>P</i> and their use of <i>P</i> cos15.		
	R = 25.729 so 25.7 N	A1	c.a.o.	4	
		16		1	

If there is a consistent $s \leftrightarrow c$ error in the weight term throughout the question, penalise only two marks for this error. In the absence of other errors this gives (i) 35.52... (ii) 1.6294... (iv) 57.486... (v) 1.688...

For use of mass instead of weight lose maximum of 2.

4761	Ν	me June	hun nyns June 20. Sub	
Q 7		Mark	Comment	Sub
2 '	With the 11.2 N resistance acting to			540
)	N2L $F - 11.2 = 8 \times 2$	M1	Use of N2L (allow $F = mga$). Allow	
			11.2 omitted; no extra forces.	
		A1	All correct	
	F = 27.2 so 27.2 N	A1	c.a.o.	2
••)	The string is in extensible	F1	Allow (light in outon gible,' but not other	3
ii)	The string is inextensible	E1	Allow 'light inextensible' but not other	
			irrelevant reasons given as well (e.g.	
			smooth pulley).	1
•••		D1		1
(iii)		B1	One diagram with all forces present; no	
			extras; correct arrows and labels accept use of words.	
		B1	Both diagrams correct with a common	
		DI	label.	
				2
iv)	Method (1)	M1	For either box or sphere, $F = ma$.	
_ ,			Allow omitted force and sign errors but	
			not extra forces. Need correct mass.	
			Allow use of mass not weight.	
	Box N2L $\rightarrow 105 - T - 11.2 = 8a$	A1	Correct and in any form.	
	Sphere N2L \uparrow $T - 58.8 = 6a$	A1	Correct and in any form.	
			[box and sphere equins with consistent	
			signs]	
	Adding $35 = 14a$	M1	Eliminating 1 variable from 2 equns in	
			2 variables.	
	$a = 2.5 \text{ so } 2.5 \text{ ms}^{-2}$	E1		
	Substitute $a = 2.5$ giving $T = 58.8 +$	M1	Attempt to substitute in either box or	
	15		sphere equn.	
	T = 73.8 so 73.8 N	A1		
	Method (2) 105 - 11.2 - 58.8 = 14a	M 1	For how and an horas E - was Must ha	
	103 - 11.2 - 38.8 - 14a	M1	For box and sphere, $F = ma$. Must be	
			correct mass.	
	a = 2.5	A1	Allow use of mass not weight.	
	u = 2.5	E1	Method made clear.	
		M1	For either box or sphere, $F = ma$.	
		1411	Allow omitted force and sign errors but	
			not extra forces. Need correct mass.	
			Allow use of mass not weight.	
	either : box N2L \rightarrow 105 – <i>T</i> – 11.2 =			
	8 <i>a</i>			
	or: sphere N2L \uparrow $T - 58.8 = 6a$	A1	Correct and in any form.	
	Substitute $a = 2.5$ in either equn	M1	Attempt to substitute in either box or	
	×.		sphere equn.	
	T = 73.8 so 73.8 N	A1		
			[If AG used in either equn award M1	
			A1 for that equn as above and M1 A1	
			for finding <i>T</i> . For full marks, both	
			values must be shown to satisfy the	
			second equation.]	
				7

				mm
4761	Ν	Mark Sche	me Ju	hun, nyme ne 20.
(v)(A)	g downwards	B1	Accept ±g, ±9.8, ±10, ±9.81	1
(B)	Taking \uparrow + ve, $s = -1.8$, $u = 3$ and $a = -9.8$	M1	Some attempt to use $s = ut + 0.5at^2$ with $a = \pm 9.8$ etc	ith
	so $-1.8 = 3T - 4.9T^2$		$s = \pm 1.8$ and $u = \pm 3$. Award for $a = g$ even if answer to (A) wrong.	
	and so $4.9T^2 - 3T - 1.8 = 0$	E1	Clearly shown. No need to show +ve required.	2
(C)	Time to reach 3 ms ^{-1} is given by			2
	3 = 0 + 2.5t so $t = 1.2$	B1		
	remaining time is root of quad	M1	Quadratic solved and + ve root added time to break.	to
	time is 0.98513 s	B1	Allow 0.98. [Award for answer seen WW]	
	Total 2.1851so 2.19 s (3 s. f.)	A1	c.a.o.	4
	With the 11.2 N resistance acting to a	the right		
(i)	$F + 11.2 = 8 \times 2$ so $F = 4.8$		The same scheme as above	
(iii)			The 11.2 N force may be in either direction, otherwise the same scheme	
(iv)	The same scheme with + 11.2 N instead of - 11.2 N acting on the box Method (1) Box N2L \rightarrow 105 - T + 11.2 = 8a Sphere as before Method (2) 105 + 11.2 - 58.8 = 14a These give $a = 4.1$ and $T = 83.4$			
			Allow 2.5 substituted in box equation give $T = 96.2$ If the sign convention gives as positiv the direction of the sphere descending a = -4.1. Allow substituting a = 2.5 in the equations to give $T = 43(sphere) or 136.2 (box).$	7e g,
(v)			In (C) allow use of $a = 4.1$ to give tim to break as 0.73117s. and total time a 1.716s	
				4
		20		

4762 Mechanics 2

Q 1		Mark	Comment	Sub
(a)(i)	before u u P m kg $Qkm kgafter v u/3$	B1		
(ii)	$mu - kmu = mv + km\frac{u}{3}$	M1	PCLM applied	1
	3	A1	Either side correct (or equiv)	
	$v = \left(1 - \frac{4k}{3}\right)u$	E1	Must at least show terms grouped	2
(iii)	Need $v < 0$	E1	Accept $\frac{4k}{3} > 1$ without reason	3
	so $k > \frac{3}{4}$	B1		
	4		[SC1: $v = 0$ used and inequality stated without reason]	2
(iv)	$\frac{\frac{1}{3}u - v}{-u - u} = -\frac{1}{2}$	M1	Use of NEL	
	2	A1		
	so $v = -\frac{2u}{3}$	E1		
	$-\frac{2u}{3} = u\left(1-\frac{4k}{3}\right)$	M1		
	so $k = 1.25$	A1	c.a.o.	5
(b)(i)	$9\binom{1}{-2} + 5\binom{3}{2} = 8\mathbf{V}$	M1	Use of PCLM	5
		B1 M1	Use of mass 8 in coalescence Use of $\mathbf{I} = \mathbf{F}t$	
	$\mathbf{V} = \begin{pmatrix} 3\\ -1 \end{pmatrix}$	E1		
(ii)	i cpt $3 \rightarrow -3 \times \frac{1}{2}$	M1	Allow wrong sign	4
	j cpt unchanged	B1	May be implied	
	New velocity $\begin{pmatrix} -1.5\\ -1 \end{pmatrix}$ ms ⁻¹	A1	c.a.o. [Award 2/3 if barrier taken as $\begin{pmatrix} 1 \\ 0 \end{bmatrix}$]	
			*/ 	3
		18		
Q 2		Mark	Comment	Sub

Q 2		Mark	Comment	Sub
(a)(i)(A)	Yes. Only WD is against	E1	Accept only WD is against gravity or	
	conservative forces.		no work done against friction.	

				June 20
4762	Ма	Mark Scheme		
				1
(B)	Block has no displacement in that direction	E1		
(**				2
(ii)	$0.5 \times 50 \times 1.5^2 = 20gx - 5gx$	M1	Use of WE with KE. Allow $m = 2$	5.
		B1	Use of 50	
		M1	At least 1 GPE term	
		A1	GPE terms correct signs	
	x = 0.38265 so 0.383 m (3 s.f.)	A1	c.a.o.	
				5
(iii)	$0.5 \times 50 \times V^2 - 0.5 \times 50 \times 1.5^2$	M1	WE equation with WD term. Allow GPE terms missing	W
		B1	Both KE terms. Accept use of 25.	
	$= 2 \times 20g - 2 \times 5g - 180$	B1	Either GPE term	
		B1	180 with correct sign	
	V = 2.6095 so 2.61 ms ⁻¹	A1	c.a.o.	
				5
(b)	Force down the slope is $2000 + 450g \sin 20$	M1	Both terms. Allow mass not weigh	nt
	<u> </u>	B1	Weight term correct	
	Using $P = Fv$	M1	-	
	$P = (2000 + 450g \sin 20) \times 2.5$	F1	ft their weight term	
	P = 8770.77 so 8770 W (3 s.f.)	A1	c.a.o.	
				5
		17		

4762	Μ	Mark Scheme			
Q 3		Mark	Comment	e 20. Sub	
(i)	c.w. moments about A	M1	Moments equation.		
	$5R_{\rm B} - 3 \times 85$ so $R_{\rm B} = 51$ giving $51 \text{ N} \uparrow$	A1	Accept no direction given		
	Either a.c. moments about B or resolve ↑	M1			
	$R_{\rm A} = 34 \text{ so } 34 \text{ N} \uparrow$	F1	Accept no direction given	4	
(ii)	c.w. moments about A	M1	Moments with attempt to resolve at least one force. Allow $s \leftrightarrow c$.		
	$85 \times 3\cos\alpha - 27.2 \times 5\sin\alpha = 0$	B1 B1	Weight term Horiz force term		
	so $\tan \alpha = \frac{3 \times 85}{27.2 \times 5} = \frac{15}{8}$	E1	Must see some arrangement of terms or equiv		
			of equiv	4	
	34 N F α 85 N B	B1	All forces present and labelled		
	a.c. moments about B	M1	Moments with attempt to resolve forces and all relevant forces present		
	$85 \times 2 \times \cos \alpha + 34 \times 2.5 - 5S \times \sin \alpha = 0$	B1	34×2.5		
		A1	All other terms correct. Allow sign errors.		
	<i>S</i> = 37.4	A1	All correct		
	Resolving horizontally and vertically	M1	Either attempted		
	\rightarrow S-F-34 sin $\alpha = 0$ so F = 7.4	E1			
	$\uparrow R-85-34\cos\alpha=0$	A1	R = 101 need not be evaluated here [Allow A1 for the two expressions if correct other than $s \leftrightarrow c$]		
	Using $F = \mu R$	M1	1		
	$\mu = \frac{7.4}{101} = 0.07326\dots$	A1	c.a.o.		
	so 0.0733(3 s.f.)			10	
		18			

4762	Ma	me Jun <u>Comment</u> Allow areas used as masses	in my my mg	
04		Mark	Comment	Sub
Q 4 (i)	Taking <i>y</i> -axis vert downwards from O	Wark	Allow areas used as masses	540
	$2\pi\sigma \times 8^2 \times 4 + 2\pi\sigma \times 8 \times k \times \frac{k}{2}$	M1	Method for c.m.	
	_	B1 B1	'4' used $16\pi k$	
		B1	$\frac{k}{2}$ used	
	$= (2\pi\sigma \times 8^2 + 2\pi\sigma \times 8k)\overline{y}$	B1	Masses correct	
	so $\overline{y} = \frac{64+k^2}{16+2k}$	E1	Must see some evidence of simplification Need no reference to axis of symmetry	6
(ii)	$k = 12$ gives OG as 5.2 and mass as $320\pi\sigma$	B1	Allow for either. Allow $\sigma = 1$	
	$320\pi\sigma \times 5.2 + \pi\sigma \times 8^2 \times 12$	M1	Method for c.m. combining with (i) or starting again	
		B1	One term correct	
	$=(320\pi\sigma+64\pi\sigma)\overline{y}$	B1	Second term correct	
	$\overline{y} = 6\frac{1}{3}$	E1	Some simplification shown	5
(iii)	0 12 12 12 12-6 $\frac{1}{3}=5\frac{2}{3}$	B1 B1 B1	G above edge of base $12-6\frac{1}{3}=5\frac{2}{3}$ seen here or below 8 seen here or below	
	$\tan \theta = \frac{8}{5\frac{2}{3}}$	M1	Accept $\frac{5\frac{2}{3}}{8}$ or attempts based on $6\frac{1}{3}$ and 8.	
	$\theta = 54.6887$ so 54.7° (3 s. f.)	A1	c.a.o.	5
(iv)	Slips when $\mu = \tan \theta$	M1	Or	5
	$\frac{8}{5\frac{2}{3}} = 1.4117$	B1		
	< 1.5 so does not slip	A1	There must be a reason	2
		19		3

MWWW. Mymainscioud.com

4763 Mechanics 3

1 (i)	$\frac{1}{2}m(v^2 - 1.4^2) = m \times 9.8(2.6 - 2.6\cos\theta)$	M1	Equation involving KE and PE
	$v^2 - 1.96 = 50.96 - 50.96 \cos \theta$	A1	
	$v^2 = 52.92 - 50.96\cos\theta$	E1	
		3	
(ii)	$0.65 \times 9.8 \cos \theta - R = 0.65 \times \frac{v^2}{2.6}$	M1	Radial equation involving $\frac{v^2}{r}$
	$6.37\cos\theta - R = 0.25(52.92 - 50.96\cos\theta)$	A1	Substituting for v^2
	$6.37\cos\theta - R = 13.23 - 12.74\cos\theta$	M1	Dependent on previous M1
	$R = 19.11\cos\theta - 13.23$	A1	Special case: $R = 13.23 - 19.11\cos\theta$ earns
		4	M1A0M1SC1
(iii)	Leaves surface when $R = 0$	M1	(ft if $R = a + b\cos\theta$ and $0 < -\frac{a}{b} < 1$)
	$\cos\theta = \frac{13.23}{19.11} (= \frac{9}{13}) (\theta = 46.19^{\circ})$	A1	Dependent on previous M1
	$v^2 = 52.92 - 50.96 \times \frac{9}{13}$	M1	
	Speed is 4.2 m s^{-1}	A1 4	
(iv)	$T\sin\alpha + R\cos\alpha = 0.65 \times 9.8$	M1 A1	Resolving vertically (3 terms)
	$T\cos\alpha - R\sin\alpha = 0.65 \times \frac{1.2^2}{2.4}$	M1 A1	Horiz eqn involving $\frac{v^2}{r}$ or $r\omega^2$
	OR $T - mg\sin\alpha = m\left(\frac{1.2^2}{2.4}\right)\cos\alpha$	M1A1	
	$mg\cos\alpha - R = m\left(\frac{1.2^2}{2.4}\right)\sin\alpha$	M1A1	
	$\sin \alpha = \frac{2.4}{2.6} = \frac{12}{13}, \cos \alpha = \frac{5}{13} (\alpha = 67.38^{\circ})$	M1 M1	Solving to obtain a value of <i>T</i> or <i>R</i>
	Tension is 6.03 N Normal reaction is 2.09 N	A1 A1	Dependent on necessary M1s (Accept 6, 2.1) Treat $\omega = 1.2$ as a misread, leading to
		8	T = 6.744, R = 0.3764 for 7/8

4763	Mark S	cheme	Equation involving EE and KE
2 (i)	$\frac{1}{2} \times 5000x^2 = \frac{1}{2} \times 400 \times 3^2$	M1	Equation involving EE and KE
		A1	Accept $\frac{3\sqrt{2}}{5}$
	Compression is 0.849 m	A1 3	Accept $\frac{-5}{5}$
(ii)	Change in PE is $400 \times 9.8 \times (7.35 + 1.4) \sin \theta$	M1	Or $400 \times 9.8 \times 1.4 \sin \theta$
	$=400 \times 9.8 \times 8.75 \times \frac{1}{7}$		and $\frac{1}{2} \times 400 \times 4.54^2$
	= 4900 J	A1	2 Or 784+4116
	Change in EE is $\frac{1}{2} \times 5000 \times 1.4^2$		M1M1A1 can also be given for a correct
	$^{2} = 4900 \text{ J}$	M1	equation in x (compression): $2500x^2 - 560x - 4116 = 0$
	Since Loss of PE = Gain of EE, car will be	E1	Conclusion required, or solving equation to
	at rest	4	obtain $x = 1.4$
(iii)	WD against resistance is $7560(24 + x)$	B1	(=181440+7560x)
	Change in EE is $\frac{1}{2} \times 5000x^2$	B1	$(=2500x^2)$
	Change in KE is $\frac{1}{2} \times 400 \times 30^2$	B1	(=180000)
	Change in PE is $400 \times 9.8 \times (24 + x) \times \frac{1}{7}$	B1	(=13440+560x)
	OR Speed 7.75 m s ^{-1} when it hits buffer, then		
	WD against resistance is $7560x$	B1	$(=2500x^2)$
	Change in EE is $\frac{1}{2} \times 5000x^2$	B1	(=12000)
	Change in KE is $\frac{1}{2} \times 400 \times 7.75^2$	B1	(=560x)
	Change in PE is $400 \times 9.8 \times x \times \frac{1}{7}$	B1	
	$-7560(24+x) = \frac{1}{2} \times 5000x^2 - \frac{1}{2} \times 400 \times 30^2$ $-400 \times 9.8 \times (24+x) \times \frac{1}{7}$	M1	Equation involving WD, EE, KE, PE
		F 1	
	$-7560(24 + x) = 2500x^{2} - 180000 - 560(24 + x)$ $-3.024(24 + x) = x^{2} - 72 - 0.224(24 + x)$	F1	
	$-3.024(24+x) = x - 72 - 0.224(24+x)$ $x^{2} + 2.8x - 4.8 = 0$	M1	Simulification to three terms and last
		A1	Simplification to three term quadratic
	$x = \frac{-2.8 + \sqrt{2.8^2 + 19.2}}{2}$	M1	
	=1.2	A1	
		10	

4763	Μ	lark Scheme	Deduct 1 mark for ms ⁻¹ etc
3(a)(i)	$[Velocity] = LT^{-1}$	B1	Deduct 1 mark for ms^{-1} etc
	$[Force] = M L T^{-2}$	B1	
	$[\text{Density}] = M L^{-3}$	B1 3	
(ii)	$M L T^{-2} = (M L^{-3})^{\alpha} (L T^{-1})^{\beta} (L^{2})^{\gamma}$ $\alpha = 1$ $\beta = 2$ $-3\alpha + \beta + 2\gamma = 1$ $\gamma = 1$	B1 B1 M1A1 A1 5	(ft if equation involves α , β and γ)
(b)(i)	$\frac{2\pi}{\omega} = 4.3$ $\omega = \frac{2\pi}{4.3} (=1.4612)$	M1 A1	
	$\dot{\theta}^2 = 1.4612^2 (0.08^2 - 0.05^2)$ Angular speed is 0.0913 rad s ⁻¹	M1 F1 A1 5	Using $\omega^2 (A^2 - \theta^2)$ For RHS (b.o.d. for $v = 0.0913 \text{ ms}^{-1}$)
	OR $\dot{\theta} = 0.08\omega\cos\omega t$ = 0.08×1.4612 cos 0.6751 = 0.0913	M1 F1 A1	Or $\dot{\theta} = (-) \ 0.08 \omega \sin \omega t$ = (-) 0.08×1.4612 sin 0.8957
(ii)	$\theta = 0.08 \sin \omega t$ When $\theta = 0.05$, $0.08 \sin \omega t = 0.05$ $\omega t = 0.6751$ t = 0.462	B1 M1 A1 cao	or $\theta = 0.08 \cos \omega t$ Using $\theta = (\pm)0.05$ to obtain an equation for <i>t</i> B1M1 above can be earned in (i) or $t = 0.613$ from $\theta = 0.08 \cos \omega t$ or $t = 1.537$ from $\theta = 0.08 \cos \omega t$
	Time taken is 2×0.462	M1	Strategy for finding the required time $(2 \times 0.462 \text{ or } \frac{1}{2} \times 4.3 - 2 \times 0.613)$
	= 0.924 s	A1 cao	or $1.537 - 0.613$) Dep on first M1 For $\theta = 0.05 \sin \omega t$, max B0M1A0M0 (for $0.05 = 0.05 \sin \omega t$)
		5	

4763	Mark S	Scheme	June 20.	A ALBERTS
4 (a)	cln3			SCIOUC
	Area is $\int_0^{\ln 3} e^x dx = \left[e^x \right]_0^{\ln 3}$	M1		T.COM
	$\int x y \mathrm{d}x = \int_{0}^{\ln 3} x \mathrm{e}^{x} \mathrm{d}x$	A1		
		M1		
	$= \left[x e^{x} - e^{x} \right]_{0}^{\ln 3}$	M1 A1	Integration by parts For $xe^x - e^x$	
	$= 3\ln 3 - 2$	411		
	$\overline{x} = \frac{3\ln 3 - 2}{2} = \frac{3}{2}\ln 3 - 1$	A1	ww full marks (B4) Give B3 for 0.65	
	$\int \frac{1}{2} y^2 dx = \int_0^{\ln 3} \frac{1}{2} (e^x)^2 dx$	M1	For integral of $(e^x)^2$	
	$= \left[\frac{1}{4} e^{2x} \right]_{0}^{\ln 3}$ $= 2$	A1	For $\frac{1}{4}e^{2x}$	
	$\overline{y} = \frac{2}{2} = 1$	A1	If area wrong, SC1 for	
		9	$\overline{x} = \frac{3\ln 3 - 2}{area}$ and $\overline{y} = \frac{2}{area}$	
(b)(i)	Volume is $\int \pi y^2 dx = \int_2^a \pi \frac{36}{x^4} dx$	M1	π may be omitted throughout	
	$=\pi \left[-\frac{12}{x^3} \right]_2^a = \pi \left(\frac{3}{2} - \frac{12}{a^3} \right)$	A1		
	$\int \pi x y^2 \mathrm{d}x = \int_2^a \pi \frac{36}{x^3} \mathrm{d}x$	M1		
	$=\pi \left[-\frac{18}{x^2} \right]_2^a = \pi \left(\frac{9}{2} - \frac{18}{a^2} \right)$	A1		
	$\overline{x} = \frac{\int \pi x y^2 \mathrm{d}x}{\int \pi y^2 \mathrm{d}x}$	M1		
	$=\frac{\pi\left(\frac{9}{2}-\frac{18}{a^2}\right)}{\pi\left(\frac{3}{2}-\frac{12}{a^3}\right)}=\frac{3(a^3-4a)}{a^3-8}$	E1		
	$\pi\left(\frac{z}{2}-\frac{1}{a^3}\right)$ a c	6		
(ii)	Since $a > 2$, $4a > 8$	M1	Condone \geq instead of $>$ throughout	
	so $a^3 - 4a < a^3 - 8$	A1		
	Hence $\bar{x} = \frac{3(a^3 - 4a)}{a^3 - 8} < 3$	E1	Fully acceptable explanation	
	i.e. CM is less than 3 units from O	3	Dependent on M1A1	
	OR As $a \to \infty$, $\bar{x} = \frac{3(1 - 4a^{-2})}{1 - 8a^{-3}} \to 3$	M1A1	Accept $\overline{x} \approx \frac{3a^3}{a^3} \rightarrow 3$, etc	
	Since \overline{x} increases as <i>a</i> increases, \overline{x} is less than 3	E1	(M1 for $\bar{x} \rightarrow 3$ stated, but A1 requires correct justification)	

Munu. My Marksus June 20. Parts cloud. com

4764 MEI Mechanics 4

1(i)	$\frac{\mathrm{d}}{\mathrm{d}t}(mv) = mg$	B1	Seen or implied	
	$\Rightarrow \frac{\mathrm{d}m}{\mathrm{d}t}v + m\frac{\mathrm{d}v}{\mathrm{d}t} = mg$	M1	Expand	
	$\Rightarrow \frac{mg}{2(v+1)}v + m\frac{\mathrm{d}v}{\mathrm{d}t} = mg$	M1	Use $\frac{\mathrm{d}m}{\mathrm{d}t}v = \frac{mg}{2(v+1)}$	
	$\Rightarrow \frac{\mathrm{d}v}{\mathrm{d}t} = g\left(1 - \frac{v}{2(v+1)}\right) = g\left(\frac{v+2}{2(v+1)}\right)$			
	$\Rightarrow \left(\frac{v+1}{v+2}\right)\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{1}{2}g$	M1	Separate variables (oe)	
	$\Rightarrow \left(1 - \frac{1}{v+2}\right) \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{1}{2}g$	E1		
				5
(ii)	$\int \left(1 - \frac{1}{v+2}\right) \mathrm{d}v = \int \frac{1}{2}g \mathrm{d}t$	M1	Integrate	
	$v - \ln v + 2 = \frac{1}{2}gt + c$	A1	LHS	
	$t = 0, v = 0 \implies -\ln 2 = c$	M1	Use condition	
	$v - \ln v + 2 = \frac{1}{2}gt - \ln 2$	1111		
	$t = \frac{2}{g} \left(v - \ln v + 2 + \ln 2 \right)$	A1		
	$v = 10 \implies t \approx 1.68$	B1		5
(iii)	As t gets large, v gets large	M1		-
	So $\frac{\mathrm{d}v}{\mathrm{d}t} \rightarrow \frac{1}{2}g$ (i.e. constant)	A1	Complete argument	
				2
2(i)	$V = -mg \cdot 2a\sin\theta + \frac{\frac{1}{2}mg}{2a}(4a\sin\theta - a)^2$	B1	GPE	
		M1 A1	Reasonable attempt at EPE EPE correct	
	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = -2mga\cos\theta + \frac{mg}{2a}(4a\sin\theta - a)\cdot 4a\cos\theta$	M1	Differentiate	
	$= -2mga\cos\theta + 2mga\cos\theta(4\sin\theta - 1)$			
	$= 4mga\cos\theta(2\sin\theta - 1)$	E1	Complete argument	5
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = 0$	M1	Set derivative to zero	
	$\Leftrightarrow \cos\theta = 0 \text{ or } \sin\theta = \frac{1}{2}$	M1	Solve	
	$\Leftrightarrow \theta = \frac{1}{2}\pi \text{ or } \frac{1}{6}\pi$	A1	Both	
	$\frac{d^2 V}{d\theta^2} = 4mga\cos\theta(2\cos\theta) - 4mga\sin\theta(2\sin\theta - 1)$	M1	Second derivative (or alternative method)	
	$V''(\frac{1}{2}\pi)(=-4mga) < 0 \implies \text{unstable}$	M1	Consider sign	
		A1	One correct conclusion validly	
1				I

			mm	2
4764	Mark Schei	me	June 2	Nymaths ()
				-Cloud.c.
4(i)	At terminal velocity, $\Sigma F = 0 \implies k \cdot 60^2 = 90g$	M1	Equilibrium of forces	-OM
	$\Rightarrow k = \frac{1}{40}g$	E1	Convincingly shown	2
(ii)	$90v\frac{dv}{dx} = 90g - \frac{1}{40}gv^2$	M1 A1	N2L	
	$\int \frac{90v}{90g - \frac{1}{40}gv^2} \mathrm{d}v = \int \mathrm{d}x$	M1	Separate and integrate	
	$-\frac{1800}{g}\ln 90g - \frac{1}{40}gv^2 = x + c_1$	A1	LHS	
	$90 - \frac{1}{40}gv^2 = Ae^{-\frac{gx}{1800}}$			
	$v^{2} = \frac{40}{g} \left(90g - Ae^{-\frac{gx}{1800}} \right)$	M1	Rearrange, dealing properly with constant	
	$x = 0, v = 0 \implies A = 90g$	M1	Use condition	
	$v^2 = 3600 \left(1 - e^{-\frac{9x}{1800}} \right)$	E1	Complete argument	
	× · ·			7
(iii)	WD against $R = \int_{0}^{1800} kv^2 dx$	B1		
	$= \int_{0}^{1800} 90g \left(1 - e^{-\frac{gx}{1800}}\right) dx$			
	$= \left[90g\left(x + \frac{1800}{g}e^{-\frac{gx}{1800}}\right)\right]_{0}^{1800}$	M1	Integrate	
	$= 162000 \left(g + e^{-g} - 1 \right)$	A1		
	$x = 1800 \implies v^2 = 3600 \left(1 - e^{-g}\right)$	B1		
	Loss in energy = $90g \cdot 1800 - \frac{1}{2} \cdot 90 \cdot 3600(1 - e^{-g})$	M1	GPE	
		M1	KE	
	$= 162000(g + e^{-g} - 1) = WD$ against <i>R</i>	E1	Convincingly shown (including signs)	7
(iv)	$v = 60\sqrt{1 - e^{-g}} \approx 59.9983$	B1		
		וע		1
(v)	$90\frac{\mathrm{d}v}{\mathrm{d}t} = 90g - 90v$	M1	N2L	
	di .	A1		
	$\int \frac{\mathrm{d}v}{g-v} = \int \mathrm{d}t \left[\operatorname{or} \int_{59.9983}^{10} \frac{\mathrm{d}v}{g-v} = \int_{0}^{t} \frac{\mathrm{d}t}{g} \right]$	M1	Separate and integrate	
	$-\ln g-v = t + c_2$	A1		
	$t = 0, v = 59.9983 \implies c_2 = -3.91598$	M1	Use condition (or limits)	
	$v = 10 \implies t = -\ln 0.2 + 3.91598$	M1	Calculate t	
	≈ 5.53 s	A1		7
L				

WWWW. My Marks Marks June 20. Painscioud.com

4766 Statistics 1

Q1 (i)	Median = 2 $Mode = 1$	B1 cao B1 cao	2
(ii)	1 2 3 4 1 2 3 4	S1 labelled linear scales on both axes H1 heights	2
(iii)	Positive	B1	1
		TOTAL	5
Q2 (i)	$\binom{25}{5}$ different teams = 53130	M1 for $\begin{pmatrix} 25\\5 \end{pmatrix}$ A1 cao	2
(ii)	$\binom{14}{3} \times \binom{11}{2} = 364 \times 55 = 20020$	M1 for either combination M1 for product of both A1 cao	3
		TOTAL	5
Q3 (i)	Mean $=\frac{126}{12} = 10.5$	B1 for mean	
	$S_{xx} = 1582 - \frac{126^2}{12} = 259$	M1 for attempt at S_{xx}	3
	$s = \sqrt{\frac{259}{11}} = 4.85$	A1 cao	
(ii)	New mean = $500 + 100 \times 10.5 = 1550$	B1 <u>ANSWER GIVEN</u>	3
	New $s = 100 \times 4.85 = 485$	M1A1 ft	5
(iii)	On average Marlene sells more cars than Dwayne.	E1	~
	Marlene has less variation in monthly sales than Dwayne.	E1 ft	2
		TOTAL	8

4766	Mark Scheme	June 2 E1 <u>ANSWER GIVEN</u>	2. Mymaths
Q4 (i)	E(X) = 25 because the distribution is symmetrical.	E1 ANSWER GIVEN	1
(ii)	Allow correct calculation of Σrp		
(11)	$E(X^{2}) = 10^{2} \times 0.2 + 20^{2} \times 0.3 + 30^{2} \times 0.3 + 40^{2} \times 0.2 = 730$ Var(X) = 730 - 25 ² = 105	M1 for $\Sigma r^2 p$ (at least 3 terms correct)	2
	$Val(X) = 750 - 25^{\circ} - 105^{\circ}$	M1dep for -25 ² A1 cao	3
		TOTAL	4
Q5 (i)	Distancefreqwidthf dens0-360507.20050-400508.000100-3071003.070200-4001332000.665	M1 for fds A1 cao Accept any suitable unit for fd such as eg freq per 50 miles.	
	10 9 7 8 5 4 3 2 1 50 100 150 200 250 300 350 400	L1 linear scales on both axes and label W1 width of bars H1 height of bars	5
(ii)	Median = 600th distance	B1 for 600 th	
	Estimate = $50 + \frac{240}{400} \times 50 = 50 + 30 = 80$	M1 for attempt to interpolate A1 cao	3
		TOTAL	8
Q6 (i)	(A) P(at most one) = $\frac{83}{100}$ = 0.83	B1 aef	1
	(B) P(exactly two) = $\frac{10+2+1}{100} = \frac{13}{100} = 0.13$	M1 for (10+2+1)/100 A1 aef	2
(ii)	P(all at least one) = $\frac{53}{100} \times \frac{52}{99} \times \frac{51}{98} = \frac{140556}{970200} = 0.145$	M1 for $\frac{53}{100} \times$ M1 <i>dep</i> for product of next 2 correct fractions	3
		A1 cao	
		TOTAL	6

4766	Mark Scheme	B1 for any one B1 for the other two M1 for product	N. N.Y. N.Y. M.
Q7 (i)		D1 for any one	2
	a = 0.8, b = 0.85, c = 0.9.	B1 for any one B1 for the other two	
(ii)	$P(Not delayed) = 0.8 \times 0.85 \times 0.9 = 0.612$	M1 for product A1 cao	
	$P(Delayed) = 1 - 0.8 \times 0.85 \times 0.9 = 1 - 0.612 = 0.388$	M1 for 1 – P(delayed) A1 ft	4
(iii)	P(just one problem)		
	$= 0.2 \times 0.85 \times 0.9 + 0.8 \times 0.15 \times 0.9 + 0.8 \times 0.85 \times 0.1$	B1 one product correct M1 three products	
	= 0.153 + 0.108 + 0.068 = 0.329	M1 sum of 3 products	4
		A1 cao	
(iv)	P(Just one problem delay)	M1 for numerator	
	$= \frac{P(\text{Just one problem})}{P(\text{Delay})} = \frac{0.329}{0.388} = 0.848$	M1 for denominator	3
		A1 ft	
(v)	P(Delayed No technical problems)	M1 for 0.15 + M1 for second term	
	<i>Either</i> = $0.15 + 0.85 \times 0.1 = 0.235$	A1 cao	
	$Or = 1 - 0.9 \times 0.85 = 1 - 0.765 = 0.235$	M1 for product M1 for 1 – product A1 cao	
	$Or = 0.15 \times 0.1 + 0.15 \times 0.9 + 0.85 \times 0.1 = 0.235$	M1 for all 3 products M1 for sum of all 3 products A1 cao	
	Or (using conditional probability formula)		3
	P(Delayed and no technical problems)		
	P(No technical problems)	M1 for numerator	
	$=\frac{0.8\times0.15\times0.1+0.8\times0.15\times0.9+0.8\times0.85\times0.1}{0.8}$	M1 for denominator	
	$=\frac{0.188}{0.8}=0.235$	A1 cao	
(vi)	Expected number = $110 \times 0.388 = 42.7$	M1 for product	2
		Alft	10
		TOTAL	18

4766	Mark Scheme	June 2	Inymainscioud.com
Q8 (i)	$X \sim B(15, 0.2)$		Y.COM
	(A) $P(V = 3) = {\binom{15}{3}} \times 0.2^3 \times 0.8^{12} = 0.2501$	M1 $0.2^3 \times 0.8^{12}$ M1 $\binom{15}{3} \times p^3 q^{12}$ A1 cao	
	Or from tables $0.6482 - 0.3980 = 0.2502$	Or: M2 for 0.6482 – 0.3980 A1 cao	3
	(B) $P(X \ge 3) = 1 - 0.3980 = 0.6020$	M1 P(X≤2) M1 1-P(X≤2) A1 cao	3 2
	(C) $E(X) = np = 15 \times 0.2 = 3.0$	M1 for product A1 cao	
(ii)	(A)Let $p =$ probability of a randomly selected child eating at least 5 a day H_0: $p = 0.2$ H_1: $p > 0.2$ (B)H_1 has this form as the proportion who eat at least 5 a day is expected to increase.	B1 for definition of p in context B1 for H ₀ B1 for H ₁ E1	4
(iii)	Let $X \sim B(15, 0.2)$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.8358 = 0.1642 > 10\%$ $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.9389 = 0.0611 < 10\%$ So critical region is {6,7,8,9,10,11,12,13,14,15}	B1 for 0.1642 B1 for 0.0611 M1 for at least one comparison with 10% A1 cao for critical region <i>dep</i> on M1 and at least one B1	
	7 lies in the critical region, so we reject null hypothesis and we conclude that there is evidence to suggest that the proportion who eat at least five a day has increased.	M1 <i>dep</i> for comparison A1 <i>dep</i> for decision and conclusion in context TOTAL	6
		IOIAL	10

4767 Statistics 2

Question 1

(i)	EITHER:		
	$S_{xy} = \sum xy - \frac{1}{n} \sum x \sum y = 316345 - \frac{1}{50} \times 2331.3 \times 6724.3$	M1 for method for S_{xy}	
	= 2817.8		
	$S_{xx} = \sum x^2 - \frac{1}{n} (\sum x)^2 = 111984 - \frac{1}{50} \times 2331.3^2 = 3284.8$	M1 for method for at least one of S_{xx} or S_{yy}	
	$S_{yy} = \sum y^2 - \frac{1}{n} (\sum y)^2 = 921361 - \frac{1}{50} \times 6724.3^2 = 17036.8$	A1 for at least one of S_{xy} , S_{xx} or S_{yy} correct	
	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{2817.8}{\sqrt{3284.8 \times 17036.8}} = 0.377$	M1 for structure of <i>r</i> A1 (AWRT 0.38)	
	OR: $cov(x, y) = \frac{\sum xy}{n} - \overline{xy} = \frac{316345}{50} - 46.626 \times 134.486$ $= 56.356$	M1 for method for $cov(x,y)$	
	rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{\frac{3284.8}{50}} = \sqrt{65.696} = 8.105$	M1 for method for at least one msd	
	$\operatorname{rmsd}(y) = \sqrt{\frac{S_{yy}}{n}} = \sqrt{\frac{17036.8}{50}} = \sqrt{340.736} = 18.459$ $r = \frac{\operatorname{cov}(x, y)}{\operatorname{rmsd}(x)\operatorname{rmsd}(y)} = \frac{56.356}{8.105 \times 18.459} = 0.377$	A1 for at least on of $cov(x,y)$, rmsd(x) or rmsd(y) correct M1 for structure of r A1 (AWRT 0.38)	5
(ii)	H ₀ : $\rho = 0$ H ₁ : $\rho \neq 0$ (two-tailed test) where ρ is the population correlation coefficient	B1 for H_0 , H_1 in symbols B1 for defining ρ	5
	For $n = 50$, 5% critical value = 0.2787	B1FT for critical value	
	Since $0.377 > 0.2787$ we can reject H ₀ :	M1 for sensible comparison leading to a conclusion	
	There is sufficient evidence at the 5% level to suggest that there is correlation between oil price and share cost	A1 for result B1 FT for conclusion in context	6
(iii)	Population The scatter diagram has a roughly elliptical shape, hence the assumption is justified.	B1 B1 elliptical shape E1 conclusion	3
(iv)	Because the alternative hypothesis should be decided without referring to the sample data and there is no suggestion that the correlation should be positive rather than negative.	E1 E1	2
		TOTAL	16

Question 2

4767	Mark Scheme	June	2
Quest	tion 2		·SCIOLU,
(i)	Meteors are seen randomly and independently There is a uniform (mean) rate of occurrence of meteor	B1 B1	2
(ii)	sightings (A) Either $P(X=1) = 0.6268 - 0.2725 = 0.3543$ Or $P(X=1) = e^{-1.3} \frac{1.3^1}{1!} = 0.3543$	M1 for appropriate use of tables or calculation A1	
	(B) Using tables: $P(X \ge 4) = 1 - P(X \le 3)$ = 1 - 0.9569 = 0.0431	M1 for appropriate probability calculation A1	4
(iii)	$\lambda = 10 \times 1.3 = 13$	B1 for mean	
(111)	$P(X=10) = e^{-13} \frac{13^{1}}{1!} = 0.0859$	M1 for calculation A1 CAO	3
(iv)	Mean no. per hour = $60 \times 1.3 = 78$ Normal approx. to the Poisson, $X \sim N(78, 78)$	B1 for Normal approx. B1 for correct parameters (SOI)	
	$P(X \ge 100) = P\left(Z > \frac{99.5 - 78}{\sqrt{78}}\right)$	B1 for continuity corr.	
	$= P(Z > 2.434) = 1 - \Phi(2.434)$ $= 1 - 0.9926 = 0.0074$	M1 for correct Normal probability calculation using correct tail A1 CAO, (but FT wrong or	5
()		omitted CC)	
(v)	Either P(At least one) = $1 - e^{-\lambda} \frac{\lambda^0}{0!} = 1 - e^{-\lambda} \ge 0.99$	M1 formation of equation/inequality using $P(X \ge 1) = 1 - P(X = 0)$ with	
	$e^{-\lambda} \leq 0.01$	Poisson distribution. A1 for correct	
	$-\lambda \le \ln 0.01$, so $\lambda \ge 4.605$	equation/inequality M1 for logs	
	$1.3 \ t \ge 4.605$, so $t \ge 3.54$	A1 for 3.54	
	Answer $t = 4$	A1 for <i>t</i> (correctly justified)	
	Or		
	$t = 1, \lambda = 1.3, P(At least one) = 1 - e^{-1.3} = 0.7275$	M1 at least one trial with any value of <i>t</i>	
	$t = 2, \lambda = 2.6, P(At \text{ least one}) = 1 - e^{-2.6} = 0.9257$	A1 correct probability. M1 trial with either $t = 3$ or $t =$	5
	$t = 3, \lambda = 3.9, P(At least one) = 1 - e^{-3.9} = 0.9798$	4	
	$t = 4, \lambda = 5.2, P(At least one) = 1 - e^{-5.2} = 0.9944$ Answer $t = 4$	A1 correct probability of $t = 3$ and $t = 4$ A1 for t	
		TOTAL	19

Mark Scheme

Question 3

4767	Mark Scheme	June M1 for standardising	W. Myma
Ques	tion 3		
(i)	$X \sim N(1720,90^2)$	M1 for standardising	
(I)		WIT IOT Standardising	
	$P(X < 1700) = P\left(Z < \frac{1700 - 1720}{90}\right)$	A1	
	= P(Z < -0.2222)		
	$= \Phi(-0.2222) = 1 - \Phi(0.2222)$		
	= 1 - 0.5879	M1 use of tables (correct tail)	
	= 0.4121		
		A1CAO NB ANSWER GIVEN	4
(ii)	P(2 of 4 below 1700)	M1 for coefficient	
	$=\binom{4}{2} \times 0.4121^2 \times 0.5879^2 = 0.3522$	M1 for $0.4121^2 \times 0.5879^2$	3
	(2)	A1 FT (min 2sf)	3
(iii)	Normal approx with $y = y = 40 \times 0.4121 = 16.48$	B1 B1	
	$\mu = np = 40 \times 0.4121 = 16.48$ $\sigma^2 = npq = 40 \times 0.4121 \times 0.5879 = 9.691$	B1 B1 for correct continuity corr.	
		M1 for correct Normal	
	$P(X \ge 20) = P\left(Z \ge \frac{19.5 - 16.48}{\sqrt{9.691}}\right)$	probability calculation using correct tail	
	$= P(Z \ge 0.9701) = 1 - \Phi(0.9701)$		
	= 1 - 0.8340 = 0.1660	A1 CAO, (but FT wrong or omitted CC)	5
(iv)	H ₀ : $\mu = 1720$;	B1	
	H_1 is of this form since the consumer organisation suspects that the mean is below 1720	E1	
	μ denotes the mean intensity of 25 Watt low energy bulbs made by this manufacturer.	B1 for definition of μ	3
(v)	Test statistic = $\frac{1703 - 1720}{90} = \frac{-17}{20.12}$	M1 must include $\sqrt{20}$	
	$\sqrt{20}$	A 1177	
	= -0.8447	A1FT	
	Lower 5% level 1 tailed critical value of $z = -1.645$	B1 for –1.645 No FT from	
		here if wrong. Must be -1.645 unless it is	
		Must be -1.645 unless it is clear that absolute values are	
		being used.	
	-0.8447 > -1.645 so not significant.	M1 for sensible comparison	
	There is not sufficient evidence to reject H ₀	leading to a conclusion. FT only candidate's test	
		statistic	
	There is insufficient evidence to conclude that the mean intensity of bulbs made by this manufacturer is less than 1720	A1 for conclusion in words in context	5
	1/20	TOTAL	20

Question 4

4767			Mark Sche	€me	June 2	v.nyna	MN NSCIOUS COTT
Ques	tion 4						SCIOUD.CO
(i)	H_0 : no association bet H_1 : some association bet				B1 M1 A2 for expected values (to 2 dp)		On
	EXPECTED	Male	Female	1	(allow A1 for at least one row		I
	Hatchback	83.16	48.84	I	or column correct)		I
	Saloon	70.56	41.44	I			I
	People carrier	51.66	30.34	I			I
	4WD	17.01	9.99	I			I
	Sports car	29.61	17.39	ļ			l
	CONTRIBUTIONHatchbackSaloonPeople carrier4WDSports car $X^2 = 22.62$ Refer to Ξ_4^2 Critical value at 5% let	Male 1.98 0.59 3.61 0.23 1.96 evel = 9.488	Female 3.38 1.00 6.15 0.40 3.33		M1 for valid attempt at $(O - E)^2/E$ A1 for all correct NB These M1A1 marks cannot be implied by a correct final value of X^2 M1 for summation A1 for X^2 CAO B1 for 4 deg of f	12	
	22.62 > 9.488 Result is significant There is evidence to s between sex and type NB if H ₀ H ₁ reversed award first B1or final	suggest that th of car. d, or 'correlat			B1 CAO for cv M1 sensible comparison leading to a conclusion A1		
(ii)	• In hatchbacks expected.	s, male drivers ale drivers are	are more freque slightly more t		E1 E1		
	In people carr frequent thanIn 4WDs the r	riers, female di expected. numbers are ro , female driver	rivers are much oughly as exped rs are more free	ected	E1 E1 E1	5	
				ļ	TOTAL	17	1

MWWW. My Marks Marks June 20. Painscioud.com

4768 Statistics 3

01	W = N(14 = 0.552)		When a condidate's ensures	
Q1	$W \sim N(14, 0.552)$ $G \sim N(144, 0.9^2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(G < 145) = P\left(Z < \frac{145 - 144}{0.9} = 1.1111\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 0.8667	A1	c.a.o.	3
(ii)	$W + G \sim N(14 + 144 = 158,$	B1	Mean.	
	$\sigma^2 = 0.55^2 + 0.9^2 = 1.1125)$	B1	Variance. Accept sd (= 1.0547).	
	P(this > 160) =			
	$P\left(Z > \frac{160 - 158}{1.0547} = 1.896\right) = 1 - 0.9710 = 0.0290$	A1	c.a.o.	3
(iii)	$H = W_1 + \dots + W_7 + G_1 + \dots + G_6 \sim N(962,$	B1	Mean.	
	$\sigma^2 = 0.55^2 + \dots + 0.55^2 + 0.9^2 + \dots + 0.9^2 = 6.9775)$	B1	Variance. Accept sd (= 2.6415).	
	P(960 < this < 965) =	M1	Two-sided requirement.	
	$P\left(\frac{960 - 962}{2 \cdot 6415} = -0.7571 < Z < \frac{965 - 962}{2 \cdot 6415} = 1.1357\right)$			
	= 0.8720 - (1 - 0.7755) = 0.6475	A1	c.a.o.	
	Now want $P(B(4, 0.6475) \ge 3)$	M1	Evidence of attempt to use binomial. ft c's <i>p</i> value.	
	$= 4 \times 0.6475^3 \times 0.3525 + 0.6475^4$	M1	Correct terms attempted. ft c's p value. Accept $1 - P(\le 2)$	
	= 0.38277 + 0.17577 = 0.5585	A1	c.a.o.	7
(iv)	$D = H_1 - H_2 \sim N(0,$	B1	Mean. (May be implied.)	
	6.9775 + 6.9775 = 13.955)	B1	Variance. Accept sd (= 3.7356). Ft 2 × c's 6.9775 from (iii).	
	Want <i>h</i> s.t. $P(-h < D < h) = 0.95$	M1	Formulation of requirement as 2- sided.	
	i.e. $P(D \le h) = 0.975$	D 1	E 10/	
	$\therefore h = \sqrt{13.955} \times 1.96 = 7.32$	B1 A1	For 1.96. c.a.o.	5
				18

			S. S	Myn Myns	
4768	Mark Schei	me	June 2	0. athscior	5
Q2					Y.CC
(i)	H ₀ : $\mu = 1$ H ₁ : $\mu < 1$ where μ is the mean weight of the cakes.	B1 B1	Both hypotheses. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.		
	$\overline{x} = 0.957375$ $s_{n-1} = 0.07314(55)$ Test statistic is $\frac{0.957375 - 1}{\frac{0.07314}{\sqrt{8}}}$	B1 M1	$s_n = 0.06842 \text{ but do } \underline{\text{NOT}} \text{ allow}$ this here or in construction of test statistic, but FT from there. Allow c's \overline{x} and/or s_{n-1} . Allow alternative: $1 + (\text{c's} - 1.895)$ $\times \frac{0.07314}{\sqrt{8}}$ (= 0.950997) for subsequent comparison with \overline{x} . (Or $\overline{x} - (\text{c's} - 1.895) \times \frac{0.07314}{\sqrt{8}}$		
	= -1.648(24).	A1	(= 1.006377) for comparison with 1.) c.a.o. but ft from here in any case if wrong. Use of $1 - \overline{x}$ scores M1A0, but		
	Refer to t_7 . Single-tailed 5% point is -1.895 .	M1 A1	ft. No ft from here if wrong. P(t < -1.648(24)) = 0.0716. Must be minus 1.895 unless absolute values are being compared. No ft from here if		
	Not significant. Insufficient evidence to suggest that the cakes are underweight on average.	A1 A1	wrong. ft only c's test statistic. ft only c's test statistic.	9	
(ii)	CI is given by $0.957375 \pm 2.365 \times \frac{0.07314}{\sqrt{8}}$	M1 B1 M1			
	= 0.957375 ± 0.061156= (0.896(2), 1.018(5))	A1	c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_7 is OK.	4	
(iii)	$\overline{x} \pm 1.96 \times \sqrt{\frac{0.006}{n}}$	M1 B1 A1	Structure correct, incl. use of Normal. 1.96. All correct.	3	

4768	1	Mark Scheme	June	M. Trymathscioud.com
(iv)	$2 \times 1.96 \times \sqrt{\frac{0.006}{n}} < 0.025$ $n > \left(\frac{2 \times 1.96}{0.025}\right)^2 \times 0.006 = 147.517$ So take <i>n</i> = 148	M1 M1	Set up appropriate in equation. Condone an equation. Attempt to rearrange and solve.	oud.com
	$n \ge \left(\frac{1}{0.025}\right)^{-147.517}$ So take $n = 148$	A1	Attempt to rearrange and solve. c.a.o. (expressed as an integer). S.C. Allow max M1A1(c.a.o.) when the factor "2" is missing. (n > 36.879)	3
				19

4768	1				Mari	k Sch	eme					June 2	v.mymai
Q3						1	,						
(i)	For a systematic she needs a with no cyc All staff equally chooses a ra then choose Not simple rand samples are pos	list of a les in th likely andom s es every lom san	all staff he list. to be c start be y 10 th .	chosen i etween	1 and 1	0	E1 E1 E1 E1 E1						5
(ii)	Nothing is known about the background population of differences between the scores. $H_0: m = 0$ $H_1: m \neq 0$ where <i>m</i> is the population median difference for the scores.						E1 E1 B1 B1	Any reference to unknown distribution or "non-parametric" situation. Any reference to pairing/differences. Both hypotheses. Hypotheses in words only must include "population". For adequate verbal definition.					4
(iii)												1	+
	Diff -0.8 Rank 2	-2.6 5	8.6 12	6.2 10	6.0 9	-3.6 6	-2.4	4 -0.4	-4.0 7	5.6 8	6.6 11	2.2	
	Diff -0.8 -2.6 8.6 6.2 6.0 -3.6 Rank25121096 $W_{-} = 1 + 2 + 4 + 5 + 6 + 7 = 25$ Refer to tables of Wilcoxon paired (/single sample) statistic for $n = 12$.Lower (or upper if 53 used) $2\frac{1}{2}$ % tail is 13 (or 65 if 53 used).Result is not significant. No evidence to suggest a preference for one of the uniforms.							For diff section T For rank ft from T (or $W_+ =$ 53) No ft from i.e. a 2-t wrong. ft only c ft only c	if differ ks. here if $r = 3 + 8 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +$	rences r ranks w + 9 + 1 e if wro . No ft t statistic	not used \sqrt{rong} . $0 + 11 - \frac{1}{2}$ \sqrt{rong} . from he	1. + 12 =	8
						————							17

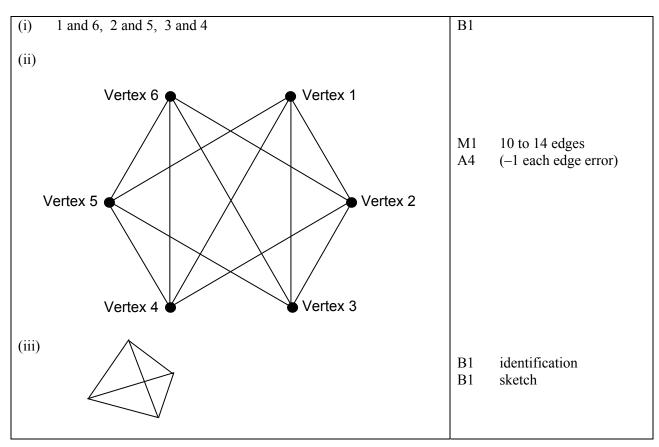
4768	Mark Sch	eme	hyn June 2	20 Nainscloud.com
Q4	$f(x) = \frac{2x}{\lambda^2}$ for $0 < x < \lambda$, $\lambda > 0$			4.com
(i)	f(x) > 0 for all x in the domain. $\int_{0}^{\lambda} \frac{2x}{\lambda^{2}} dx = \left[\frac{x^{2}}{\lambda^{2}}\right]_{0}^{\lambda} = \frac{\lambda^{2}}{\lambda^{2}} = 1$	E1 M1 A1	Correct integral with limits. Shown equal to 1.	3
(ii)	$\mu = \int_0^{\lambda} \frac{2x^2}{\lambda^2} dx = \left[\frac{2x^3/3}{\lambda^2}\right]_0^{\lambda} = \frac{2\lambda}{3}$	M1 A1	Correct integral with limits. c.a.o.	
	$P(X < \mu) = \int_0^{\mu} \frac{2x}{\lambda^2} dx = \left[\frac{x^2}{\lambda^2}\right]_0^{\mu}$ $= \frac{\mu^2}{\lambda^2} = \frac{4\lambda^2/9}{\lambda^2} = \frac{4}{9}$	M1	Correct integral with limits.	
	λ^2 λ^2 9 which is independent of λ .	A1	Answer plus comment. ft c's μ provided the answer does not involve λ .	4
(iii)	Given $E(X^2) = \frac{\lambda^2}{2}$ $\sigma^2 = \frac{\lambda^2}{2} - \frac{4\lambda^2}{9} = \frac{\lambda^2}{18}$	M1 A1	Use of $Var(X) = E(X^2) - E(X)^2$. c.a.o.	2
(iv)		.36983 8.4915		
	$X^{2} = 3.0094 + 0.2896 + 0.1231 + 3.5152$ = 6.937(3) Refer to χ_{3}^{2} . Upper 5% point is 7.815. Not significant. Suggests model fits the data for these jars. But with a 10% significance level (cv = 6.251) a different conclusion would be reached.	M1 A1 M1 A1 M1 A1 A1 A1 A1 E1	Probs × 50 for expected frequencies. All correct. Calculation of X^2 . c.a.o. Allow correct df (= cells – 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. P($X^2 > 6.937$) = 0.0739. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Any valid comment which recognises that the test statistic is close to the critical values.	9
				18

WWWW. Mymainscioud.com

4769 Statistics 4

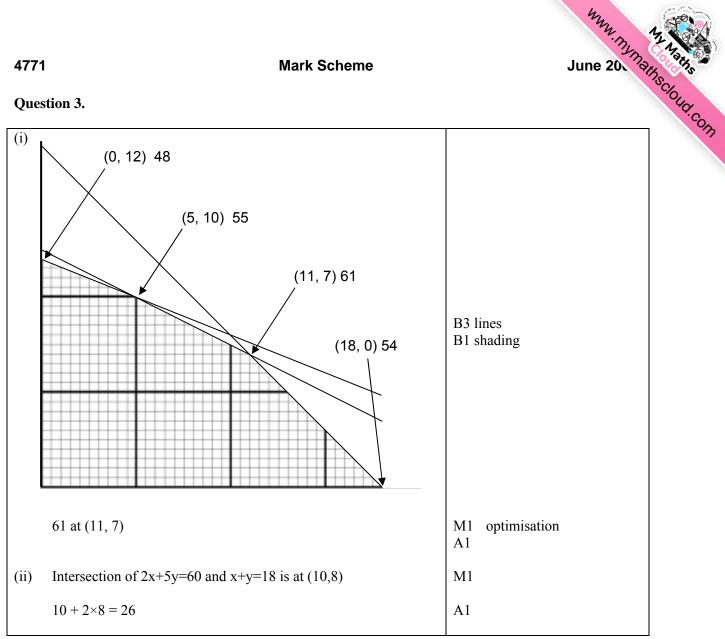
Q1	Follow-through all intermediate results in this question, unless obvious nonsense.			
(i)	$P(X \ge 2) = 1 - \theta - \theta (1 - \theta) = (1 - \theta)^{2} [o.e.]$	M1 A1		
	$\mathbf{L} = \left[\theta\right]^{n_0} \left[\theta(1-\theta)\right]^{n_1} \left[\left(1-\theta\right)^2\right]^{n-n_0-n_1}$	M1	Product form	
	$0^{n_0+n_1}$ (1 $0^{2n-2n_0-n_1}$	A1 A1	Fully correct BEWARE PRINTED	
	$=\theta^{n_0+n_1}(1-\theta)^{2n-2n_0-n_1}$		ANSWER	5
(ii)	$\ln \mathbf{L} = (n_0 + n_1) \ln \theta + (2n - 2n_0 - n_1) \ln (1 - \theta)$	M1 A1		
	$\frac{d\ln L}{d\theta}$	M1		
	$= \frac{n_0 + n_1}{\theta} - \frac{2n - 2n_0 - n_1}{1 - \theta}$	A1		
	=0	M1		
	$\Rightarrow (1 - \hat{\theta}) (n_0 + n_1) = \hat{\theta} (2n - 2n_0 - n_1)$			
	$\Rightarrow \hat{\theta} = \frac{n_0 + n_1}{2n - n_0}$	A1		6
(iii)	$E(X) = \sum_{x=0}^{\infty} x\theta (1-\theta)^x$	M1		
	$= \theta \{ 0 + (1 - \theta) + 2(1 - \theta)^{2} + 3(1 - \theta)^{3} + \}$		Divisible, for algebra; e.g.	
	$=\frac{1- heta}{ heta}$	A2	by "GP of GPs" BEWARE PRINTED ANSWER	
	So could sensibly use (method of moments)			
	$\widetilde{\theta}$ given by $\frac{1-\widetilde{\theta}}{\widetilde{\theta}} = \overline{X}$	M1		
	$\Rightarrow \widetilde{\theta} = \frac{1}{1 + \overline{Y}}$	Al	BEWARE PRINTED ANSWER	
	1 + 24			
	To use this, we need to know the exact numbers of faults for components with "two or more".	E1		+6
(iv)	$\overline{x} = \frac{14}{100} = 0.14$	B1		
	$\widetilde{\theta} = \frac{1}{1+0.14} = 0.8772$	B1		
	Also, from expression given in question,			
	$\operatorname{Var}(\widetilde{\theta}) = \frac{0.8772^2 (1 - 0.8772)}{100}$			
	= 0.000945	B1		
	CI is given by 0.8772 $\pm 1.96 \times \sqrt{0.000945} =$	M1	For 0.8772	
	(0.817, 0.937)	B1 M1	For 1.96	
		A1	For $\sqrt{0.000945}$	-
1				7

				mm 1
4769	Ma	ark Scheme	Ju	www.mymainscio
Q2				
(i)	Mgf of Z = E (e ^{<i>tZ</i>}) = $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{tz - \frac{z^2}{2}} dz$	M1		
	Complete the square	M1		
	$tz - \frac{z^2}{2} = -\frac{1}{2}(z-t)^2 + \frac{1}{2}t^2$	A1		
		A1	$\frac{t^2}{2}$	
	$\frac{t^2}{t} \bullet \infty = 1 - \frac{(z-t)^2}{t}$	M1	For taking out factor $e^{\overline{2}}$	
	$= e^{\frac{t^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-t)^2}{2}} dt = e^{\frac{t^2}{2}}$	M1 M1	For use of pdf of $N(t,1)$	
	V 2/2	M1	For $\int pdf = 1$	
	Pdf of N(t,1)	A1	For final answer $e^{\frac{t^2}{2}}$	
	$\therefore \int = 1$	111		8
(ii)	Y has mgf $M_{y}(t)$			
	Mgf of $aY + b$ is $E[e^{t(aY+b)}]$	M1	For factor e^{bt}	
		1 1	For factor $E[e^{(at)Y}]$	
	$= e^{bt} E[e^{(at)Y}] = e^{bt} M_Y(at)$	1	For final answer	.
		1		4
(iii)	$\overline{X-\mu}$ $\overline{X-\mu}$	M1		
	$Z = \frac{X - \mu}{\sigma}$, so $X = \sigma Z + \mu$	1	For factor $e^{\mu t}$	
	:. $M_{X}(t) = e^{\mu t} \cdot e^{\frac{(\sigma t)^{2}}{2}} = e^{\mu t + \frac{\sigma^{2} t^{2}}{2}}$		$(\sigma t)^2$	
	$\therefore M_X(t) = e^{\mu t} \cdot e^{-2} = e^{-2}$	1	For factor e^{-2}	Α
		1	For final answer	4
(iv)	$W = e^X$			
	$E(W^k) = E[(e^X)^k] = E(e^{kX}) = M_X(k)$	M1	For $E[(e^X)^k]$	
	$\mathbf{L}(\mathbf{n}) = \mathbf{L}(\mathbf{v}) = \mathbf{L}(\mathbf{v}) + \mathbf{L}_{\mathbf{X}}(\mathbf{v})$	A1	For $E(e^{kX})$	
		A 1		
		Al	For $M_X(k)$	
	$\therefore \mathbf{E}(W) = M_X(1) = \mathrm{e}^{\mu + \frac{\sigma^2}{2}}$	M1 A1		
	$\Gamma(W^2)$ $\mu(\alpha) = 2\mu + 2\sigma^2$			
	$E(W^2) = M_X(2) = e^{2\mu + 2\sigma^2}$	_2 M1 A1		
	$\therefore \operatorname{Var}(W) = e^{2\mu + 2\sigma^2} - e^{2\mu + \sigma^2} [= e^{2\mu + \sigma^2} (e^{\sigma})]$	$(r^2 - 1)$] A1		8

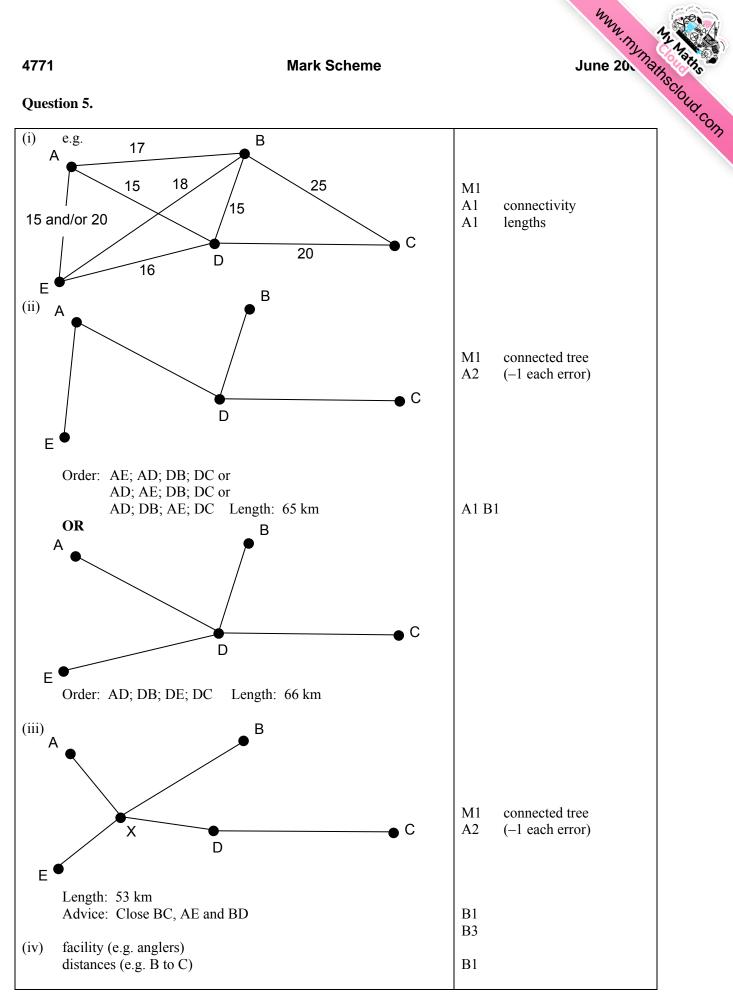

4769	Mark Scheme		June 3 A1 if all correct. [No mark for use of s_n , which are	w.myma
Q3				
(i)	$\overline{x} = 126 \cdot 2 \ s = 8 \cdot 7002 \ s^2 = 75 \cdot 69\dot{3}$ $\overline{y} = 133 \cdot 9 \ s = 10 \cdot 4760 \ s^2 = 109 \cdot 74\dot{6}$	A1	8.2537 and 9.6989 respectively.]	
	$H_0: \mu_A = \mu_B$ $H_0: \mu_A \neq \mu_B$	1	<u>Do not</u> accept $\overline{X} = \overline{Y}$ or similar.	
	Where μ_A, μ_B are the population means. Pooled s^2	1		
	$= \frac{9 \times 75 \cdot 69\dot{3} + 6 \times 109 \cdot 47\dot{6}}{15} = \frac{681 \cdot 24 + 658 \cdot 48}{15}$ = 89 \cdot 314\ddot{6} [\sqrt{ = 9\cdot 4506]}	B1		
	Test statistic is $\frac{126 \cdot 2 - 133 \cdot 9}{\sqrt{89 \cdot 3146} \sqrt{\frac{1}{10} + \frac{1}{7}}} = -\frac{7 \cdot 7}{4 \cdot 6573} = -1 \cdot 653$	M1 A1		
	Refer to t_{15}	1	No FT if wrong	
	Double-tailed 10% point is 1.753 Not significant	1 1	No FT if wrong	
	No evidence that population mean concentrations differ.	1		10
(ii)	There may be consistent differences between days (days of week, types of rubbish, ambient conditions,) which should be allowed for.	E1 E1		
	Assumption: Normality of population of <u>differences</u> . Differences are 7.4 -1.2 11.1 5.5 6.2 3.7 -0.3 1.8 3.6	1		
	$[\overline{d} = 4.2, s = 3.862 (s^2 = 14.915)]$ Use of $s_n (= 3.641)$ is <u>not</u> acceptable, even in a	M1	A1 Can be awarded here if NOT awarded in part (i)	
	denominator of $s_n / \sqrt{n-1}$]			
	Test statistic is $\frac{4 \cdot 2 - 0}{3 \cdot 862 / \sqrt{9}} = 3 \cdot 26$	M1 A1		
	Refer to t_8 Double-tailed 5% point is 2.306	1 1	No FT if wrong No FT if wrong	
	Significant Seems population means differ	1 1		10

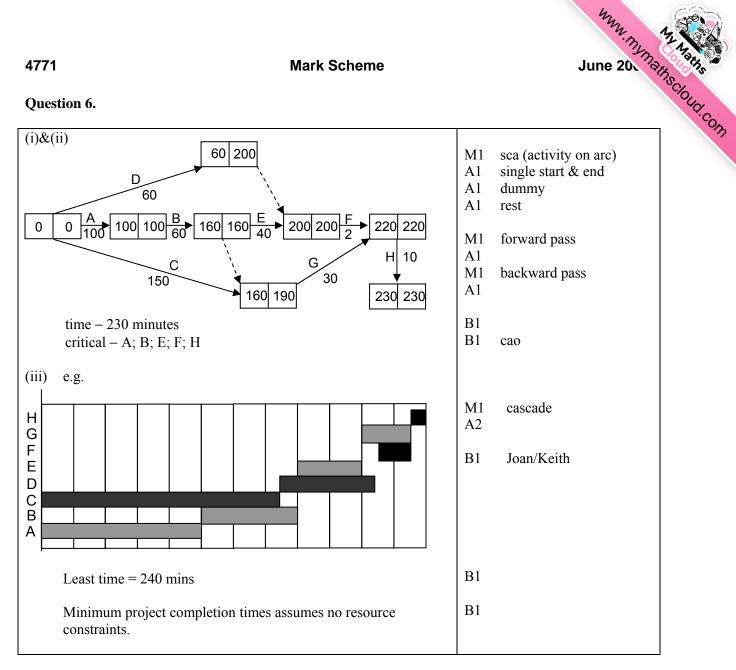
1769	Mark Schem	e		June 20
iii)	Wilcoxon rank sum test	B1		
	Wilcoxon signed rank test	B1		
	$H_0: median_A = median_B$ $H_1: median_A \neq median_B$	1 1	[Or more formal statements]	4
Q 4				
i)	Description must be in <u>context</u> . If no context given,			
	mark according to scheme and then give half-marks, rounded down.			
	Clear description of "rows".	E1		
		E1		
	And "columns"	E1 E1		
	As extraneous factors to be taken account of in the	E1		
	design, with "treatments" to be compared.	E1		
	Need same numbers of each	E1		
	Clear contrast with situations for completely	E1		
	randomised design and randomised trends.	E1		9
ii)	$e_{ii} \sim \text{ind N}(0, \sigma^2)$	1	Allow uncorrelated	
	y x · · ·	1	For 0	
		1	For σ^2	
	α_i is population mean effect by which <i>i</i> th treatment	1		
	differs from overall mean	1		5
iii)	Source of SS df MS MS Variation ratio			5
	Between $92.30 4 4 23.075 5.03$ Treatments	4		
	Residual 68.76 15 - 4.584 -	-1		
		-1		
	Total 161.06 19 ◀	-1		
	Refer to $F_{4,15}$	1	No FT if wrong	
	Upper 1% point is 4.89	1	No FT if wrong	
	Significant, seems treatments are not all the same	1	-	10

4771 Decision Mathematics 1


Question 1

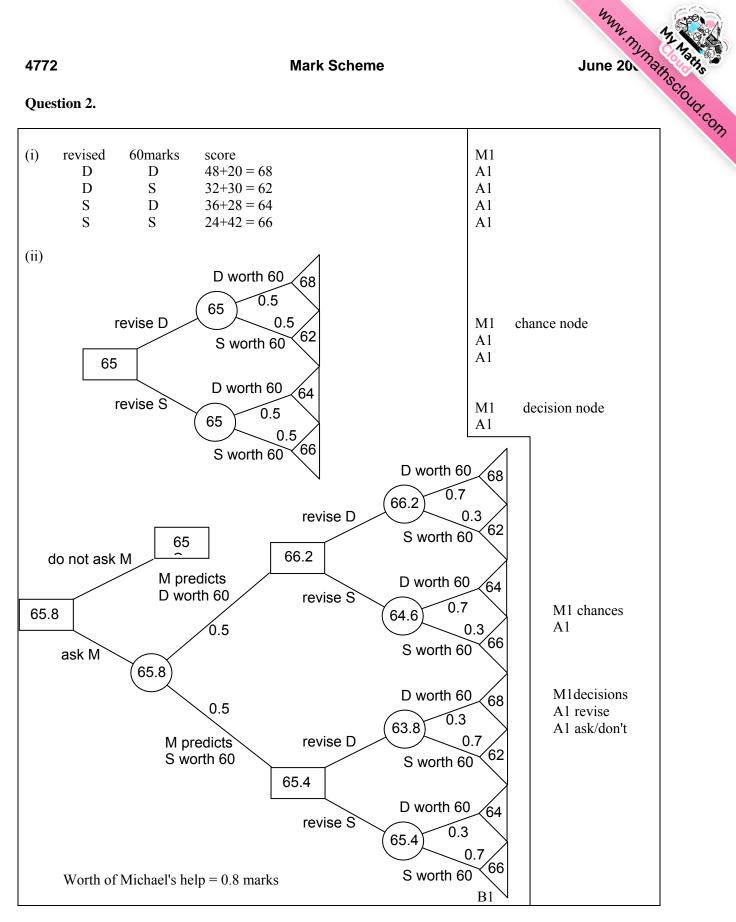
Question 2.


(i)	A's c takes 2, leaving 3. You have to take 1. A's c takes one and you lose.	M1 A1 A1	
(ii)	A's c takes 3 leaving 3. Then as above.	M1 A1	
(iii)	A's c takes 3 leaving 4. You can then take 1, leading to a win.	M1 A1 A1	



4771	I				Ma	ark S	Schei	me		June 20	2 14 Strates
Ques	tion 4.										Cloud.Co
(i)	e.g. 0 –	4 exit	5 – 9 ot	her vert	ex				B1 B	1	OM
(ii)	e.g. 1 2 3 4 5 6 7 8 9 10	A A A A A A A A A A A A A A A A A A A	E×A B B B E×A B E×A	A E×B A A E×B	B	A A A ×B	B E×A B	E×B E×B	M1 A1	process with exits	
	0.5, 0.5	, 1.9		etical an ler's ruir		2/3, 1	/3, 2)		B1 M1 A1	probabilities duration	
(iii)	e.g. 0–2 6–8	exit other v	ertex		xt vertex re and re				M1 DM1 A1 A1	ignore conditionality equal prob efficient	
(iv)	e.g. 1 2 3 4 5 6 7 8	2 A 3 A 4 A 5 A 6 A 8 A	C E×A B E×A C E×A B	C A C	B E×A B B E×C	E	A C B	E×A E×C	M1 A2		
	9 10 0.7, 0.1	0 A	E×A (Theore			0.5, 0).25, (0.25)	M1 A1		

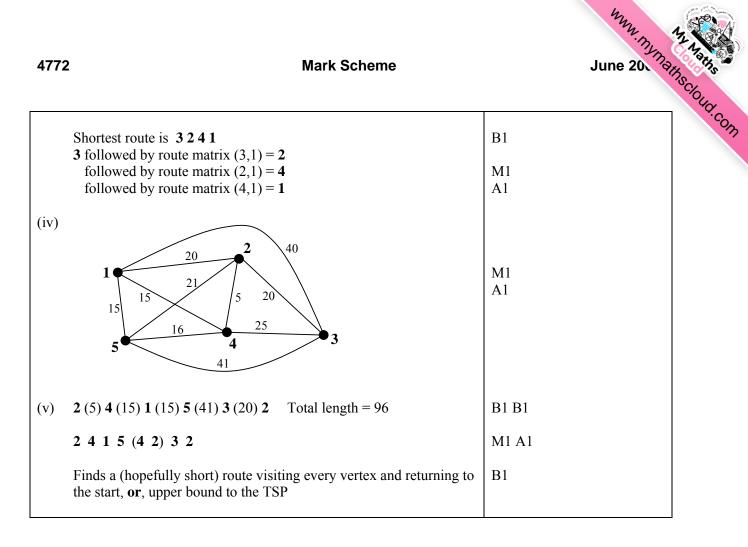
Question 6.



4772 Decision Mathematics 2

Question 1.

 (a) e.g. "It is easy to overestimate the effect that your contribution will make." 	M1 A1	remove double negatives same meaning
(b) e.g.		
A		
	M1	combinatorial
	A1 A1	"ands" negations
	A1	"ors" one for each
C machine	A3	alternative
(c) e.g.		
$((a \land b) \lor (~a \land c)) \lor (~b \land c)$	M1	8 lines
1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1	A1	a, b, c
1 0 0 0 0 0 1 1 1 1 1	A1	negations
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 A1	"and"s "or"s
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
0 0 0 1 1 1 1 1 1 1 1 1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \ \ \sim \ ((\sim a \ \land \ \sim c) \ \lor \ (\sim b \ \land \ \sim c)) $		
1 0 0 0 0 0 0 0	M1	
	Al	
1 0 0 0 1 0 0 0 0 0 1 1 1 1 1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
1 1 0 0 1 0 0 1 1 1 1 1 1 1 1		

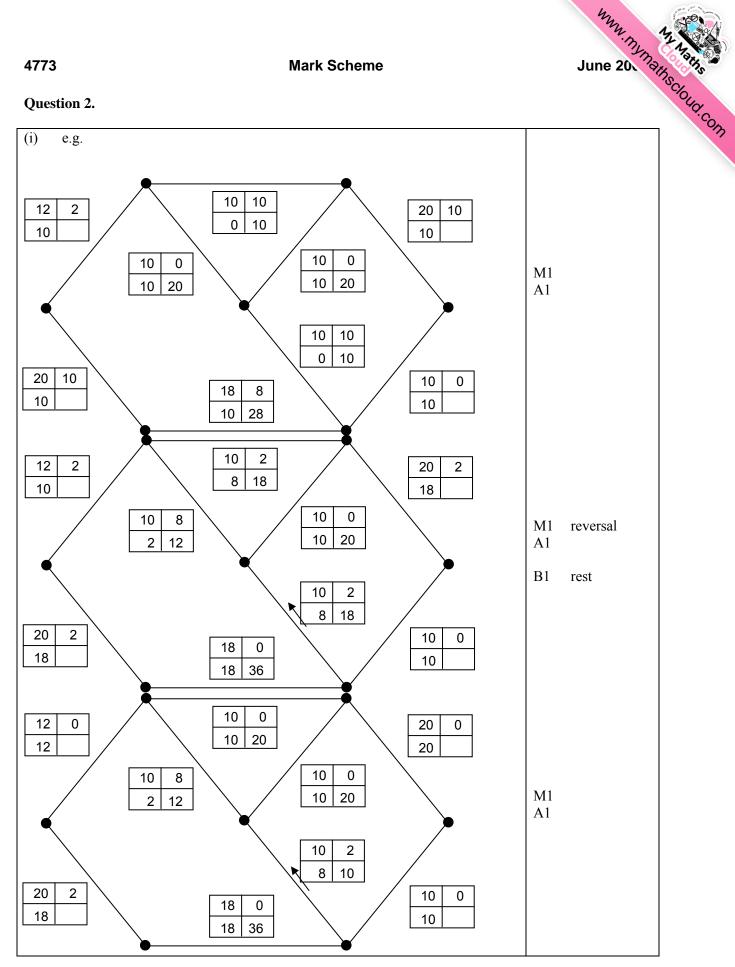


Question 3	3.
------------	----

4772 Mark Scheme Question 3.	B1
(i) a is the number of acres of land put to crop A, etc $a + b \le 20$ is equivalent to $a + b \le c + d$ Given that $a + b + c + d \le 40$, the maximisation will ensure that $a + b + c + d = 40$ (and it's easier to solve using simplex).	B1 B1 B1
(ii) $\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1 A1 A1 A1 M1 A1 M1 A1 B1 B1
A P a b c d s1 s2 sur art R 1 0 1 1 1 1 0 0 -1 0 40 0 1 -50 -40 -40 -30 0 0 0 0 0 0 0 1 1 0 0 1 0 0 20 0 0 1 1 0 0 1 0 40 0 0 1 1 0 0 0 0 20 0 0 1 1 0 0 0 40 0 0 1 1 1 0 0 40 0 0 1 1 1 1 0 0 -1 1 40 Minimise A (to zero) then drop A row and art column and continue normally OR O	B1B1B1surplusB1artificialB13 constraintsB1B1OR
Pabcds1s2surartR1 -50 -40 -40 -30 00M0 $-40M$ $-M$ $-M$ $-M$ $-M$ $-M$ $-M$ $-M$ $-M$ 0110010020011101040011110040011110040011110040	M1 A1 B1 surplus B1 artificial B1 B1

Question 4.

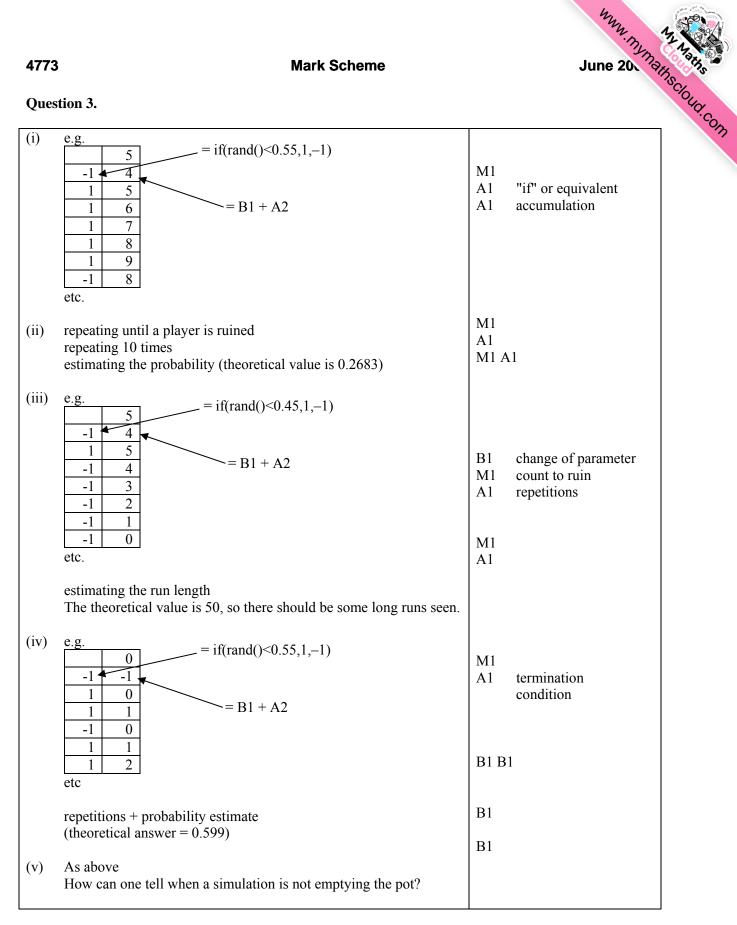
4772 Question 4.	Mark Scheme	MMW. My Martins June 20. Nainscioud.com
(a) (i),(ii) and (iii)		Y.COM
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5123451511234523212345 ∞ 31234516412345 ∞ 512345	M1 distance A1 1 to 5 etc A1 rest B1 route
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 1 2 3 4 5 15 1 1 2 3 4 5 23 2 1 1 3 4 5 ∞ 3 1 2 3 4 5 ∞ 3 1 2 3 4 5 16 4 1 2 3 1 5 30 5 1 2 3 4 1	Not part of the question
2 22 44 20 5 5 3 42 20 40 25 4 4 15 5 25 10	5 1 2 3 4 5 15 1 2 2 2 4 5 23 2 1 1 3 4 5 43 3 2 2 2 2 2 16 4 1 2 2 2 5 30 5 1 2 2 4 1	Not part of the question
2 22 44 20 5 5 3 42 20 40 25 5 4 15 5 25 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Not part of the question
2 20 10 20 5 5 3 40 20 40 25 5 4 15 5 25 10	5 1 2 3 4 5 15 1 4 4 4 4 5 21 2 4 4 3 4 4 41 3 2 2 2 2 2 16 4 1 2 2 2 5 30 5 1 4 4 4 1	M1 A1 10 changed dists M1 2's in r3 of route A1 rest of route
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B1 B1



4773 Decision Mathematics Computation

Question 1.

(i)	$B_{n+2} = B_{n+1} + (0 - B_n)$	M1 A1
(ii)	Oscillation: 2, 4, 2, -2, -4, -2, 2, 4,	M1 A1 B1
(iii)	$B_{n+2} - B_{n+1} + \frac{1}{2}B_n = 0$ 2, 4, 3, 1, -0.5, -1,, 0.00391, -0.00195 Oscillatory convergence	B1 B1 B1
(iv)	2, 4, 3.5, 2.5, 1.625, 1,, 0.00022, 0.00012 Faster and uniform convergence	B1 B1 B1
(v)	Auxiliary eqn: $x^2 - x + \frac{1}{4} = 0$	B1 B1
	$x = \frac{1}{2}$	B1
	$B_n = A\left(\frac{1}{2}\right)^n + Bn\left(\frac{1}{2}\right)^n$	B1
	2 = A	B1
	$4 = 1 + \frac{1}{2}B$ giving $B = 6$	B1
	$B_n = (2+6n) \left(\frac{1}{2}\right)^n \text{ or } (1+3n) \left(\frac{1}{2}\right)^{n-1} (2+6n) \left(\frac{1}{2}\right)^n \text{ or } (1+3n) \left(\frac{1}{2}\right)^n$	B1
	"the same"	



4773		Mark Schem	ie	A1 variables objective
(ii) {	S, A, C, D, E} / {B, T]}	M1 .	A1 .Com
	AB + CB - BA	-BC - BT = 0 - CA - CB - CD = 0 = 0	M1 A1 M1 A1	variables objective balancing
eı	AB < 10 BA < 10 AC < 10 CA < 10 BC < 10 CD < 10 CD < 10 DC < 10 ED < 18 DE < 18 BT < 20 DT < 10 and		M1 A1 A1	capacities forwards backwards
1) V S. S B C A A C B B D C D E	ARIABLE VAL A 12.00 E 18.00 A 0.000 A 0.000 A 0.000 B 10.00 C 2.000 B 10.00 C 0.000 T 20.000 C 8.000 D 0.000 D 18.00	UE REDUCED COS 00000 0.000000 00000 0.000000 0000 0.000000 0000 0.000000 0000 0.000000 0000 0.000000 0000 0.000000 0000 0.000000 0000 0.000000 0000 0.000000 0000 0.000000 0000 0.000000 0000 0.000000	T B1	running
S	olution as per part (i)		B1	

Mark Scheme

Question 3.

Question 4.

4773		Mark Scheme	Jun	e 20 Arths
Questic	on 4.			the 20 mainscloud. Co
(i) n	nax 4s1m0+7s1m1+	8s1m2+9s1m3+11s1m4+3s2m0	M1	
		2+12s2m3+14s2m4+3s3m0	A1	
		+13s3m3+15s3m4	D1	
S		n2+s1m3+s1m4=1 n2+s2m3+s2m4=1	B1 B1	
		$n_2 + s_2 m_3 + s_2 m_4 - 1$ $n_2 + s_3 m_3 + s_3 m_4 = 1$	B1 B1	
		s1m3+4s1m4+s2m1+2s2m2+3s2m3	M1	
		-2s3m2+3s3m3+4s3m4=4	Al	
e	nd			
	nt 15		B1	
	P OPTIMUM FOUN			
C	DBJECTIVE VALUE	= 24.0000000		
		UTION OF 24.0000000 AT BRANCH 0		
	PIVOT 14			
R	RE-INSTALLING BE	ST SOLUTION		
	TIVE FUNCTION V	ALUE		
1) 24	4.00000			
VARIA	BLE VALUE R	EDUCED COST		
S1N		-4.000000		
S1N		-7.000000	M1	
S1N		-8.000000	Al	
S1N	13 0.000000	-9.000000		
S1N		-11.000000		
S2N		-3.000000		
S2N		-6.000000		
S2N		-10.000000		
S2N		-12.000000		
S2N S3N		-14.000000 -3.000000		
S3N S3N		-7.000000		
S3N S3N		-8.000000		
S3N		-13.000000		
S3N		-15.000000		
ROW	SLACK OR SURPLU	JS DUAL PRICES	В3	
2)	0.000000	0.000000	B1	
3)	0.000000	0.000000		
4)	0.000000	0.000000	M1	
5)	0.000000	0.000000	A1	
	£1 million at site 1, £2 e = £24 million.	million at site 2 and £1 million at site 3.	M1 A1	
(iii) (a	a) £2 million at site	e 2 and £1 million at site 3.		
(111) ((Revenue = $\pounds 21$ i			
а		e 1, £3 million at site 2 and £4 million at site 3		
((or £1m, £4m ar			
	Revenue = $\pounds 34$ i		1	

4773

MWWW. My Marks June 20. Painscioud.com

4776 Numerical Methods

1(i)	$=4(x^2-1.4x+$	f(x) = 1.6(x - 0.4)(x - 1)/(-0.4)(-1) + 2.4x(x - 1)/(0.4)(0.4 - 1) + 1.8x(x - 0.4)/(11 - 0.4) = 4(x ² - 1.4x + 0.4) - 10(x ² - x) + 3(x ² - 0.4x) = -3x ² + 3.2x + 1.6							
(ii)	Newton's formula	requires equ	ally spaced	data			[A1] [E1] [TOTAL 7]		
2		1							
2	$x^{2} + 1/x - 3$	1 -1	2 1.5	(change of	f sign so root)	[M1A1]		
	$f(x) = x^2 + 1/x - 3$		$= 2x - 1/x^2$	hence NI 2	R formula 3		[M1A1]		
	X_r	-	1.532609		_	1.53209	[M1A1A1]		
							[TOTAL 7]		
3(i)	term	X 0.0005	<i>X</i> + <i>Y</i> 0.001	X - Y	10X + 20Y		[D1D1D1D1]		
	mpe	0.0003	0.001	0.001	0.015		[B1B1B1B1]		
(ii)	term	Х	Y	XY	X/Y				
	mpre	0.000184	0.000159	0.000343	0.000343		[B1B1B1B1]		
							[TOTAL 8]		
4(i)	to 6 dp:	sin <i>A</i> 0.846832	sin <i>B</i> 0.841471	LHS 0.5361	RHS 0.536088		[B1B1]		
(ii) (iii)	It is an approximat LHS involves 2 tri Subtraction of nea	g functions,	RHS just 1.		-	-	[E1E1]		
(iii)	RHS involves no s			bigger probi	em as the un	nerence decreases.	[E1E1]		
							[TOTAL 6]		
5	1.2				r	x_r			
		\searrow			0 1	0.6 0.8704	[G2]		
					2 3	0.426048 0.967052	[M1A1A1]		
	1 1.2 1.4	1.6 1.0	1 1.2			agram showing	[M1A1A1]		
	•			1	spiralling o	out from root	[TOTAL 8]		

6(i)	x	f(x)
	0	1.732051
	0.8	1.777639

T1 = 1.403876 *M* [M1]

4776)		Ma	rk Scheme)	Jı	WWW. ITYMA HANKS IN THE 20. IN THE PARTY OF
	0.4 0.2	1.8 1.777639	M1 =	1.44	T2 = 1.421938	T values	[M1_11]
	0.2	1.8	M2 =	1.431056		r active	[subtotal 6]
(ii)		1.427959 1.428016	(a.g.)				[M1] [M1A1] [subtotal 3]
(iii)	S4 =	(2 M4 + T4	4) / 3 =	1.428020			[M1A1] [subtotal 2]
(iv)	M diffs ratio	1.44	1.431056 -0.00894	1.428782 -0.00227 0.254186	approx 0.25		[M1A1]
	S diffs ratio	1.427959	1.428016 5.77E-05	1.428020 3.99E-06 0.069037	(approx 0.0625)		[M1A1A1]
	Reasoning to: integ	gral is secure	e as 1.42802	<i>b</i> (0)			[M1B1] [subtotal 7] [TOTAL 18]
7(i)	x 1	$ \begin{array}{c} \mathbf{f}(x) \\ 0.6 \\ 0.1 \end{array} $	1st diff	2nd diff			
	1.2 1.4	-0.1 0.4	-0.7 0.5	1.2			[M1A1]
	f(x) = 0.6 + (-0.7)(x) $= 0.6 - 3.5x + 3$			(x-1.2)/(2	$(0.2)^2)$		[M1A1A1A1
	$= 15x^2 - 36.5x + 10x^2$		13N + 10				[M1A1] [subtotal 8]
(ii)	f'(x) = 30x - 36.5 Central difference: Suggests central di		occurate for	(0.4 - 0.6)	36 - 36.5 = -0.5 /(1.4 - 1) = -0.2/0.4 = -0.5).5	[M1A1] [M1A1] [E1] [subtotal 5]
(iii)	Forward difference Shows that forward Quadratic estimate saying that we can	d difference (-6.5) is like	ely to be mo	(-0.1 – 0.6 for quadrati		-3.5	[B1] [M1A1] [E1] [Subtotal 5] [TOTAL 18]

MWWW. My Marks June 20. Painscioud.com

4777 MEI Numerical Computation

1(i)	$-1 < g'(\alpha) <$	1						[B 1]
	-	of rhs set to z btain given r	ero at root: λ	$g'(\alpha) + 1 - \lambda$		oth sides.		[M1A1] [M1A1] [A1] [A1]
(iii)	3.5 3 2.5 2 1.5 1 0.5 0 -0.5		1.5 2	2.5	3 35			[subtotal 7]
	-1							[G3
	Roots appro	ximately 0.2	5, 2.1] [B1B1]
	Eg:							
	r 0 1 2 3 4 5 6 7 8 9 10 No converge		x _r 0.2 0.096008 -0.21242 -1.13247 -3.21639 -0.2758 -1.31696 -3.40387 0.277847 0.322857 0.451832 case	x_r 0.4 0.668255 1.358852 2.432871 1.452591 2.479066 1.345334 2.424072 1.472555 2.485535 1.329994	x _r 2 2.227892 1.875308 2.36198 1.609012 2.49781 1.300676 2.391217 1.545741 2.499058 1.297679	x _r 2.2 1.925489 2.31326 1.710416 2.470807 1.364805 2.436576 1.444139 2.475969 1.352649 2.4289	x_r 2.4 1.52639 2.497043 1.302517 2.392685 1.542517 2.498801 1.298298 2.389305 1.549934 2.499347	[M1A1A1]
	Let $g(x) = 3$ Then $g'(x) =$	$3\cos x$						B7 4447
	So $\lambda = 1 / (1)$	$1 - 3 \cos \alpha$						[M1A1]

Smaller root:	$\lambda =$	-0.52446 (approx -0.5)	Larger root:	$\lambda =$	0.397687 (approx 0.4)	[M1A1A1]
	r	x_r		r	x_r	
	0	0.25	NB: must	0	2.1	
	1	0.253894	be using	1	2.095851	
	2	0.254078	relaxatio	2	2.095866	

	n	
0.254087		
0.254088		
0.254088		

3

4

5

		MMM. My Marks June 20. Rainscioud.com [M1A1] [M1A1]
3 4	2.095866 2.095866	[M1A1]
5	2.095866	[M1A1]

[subtotal 17] **[TOTAL 24]**

2(i)	$\mathbf{f}(\mathbf{x}) = 1$	2h = 2a + b	[M1A1]
	$f(x) = x, x^3$ give $0 = 0$		[M1A1]
	$\mathbf{f}(\mathbf{x}) = \mathbf{x}^2$	$2h^3/3 = 2a\alpha^2$	[A1]
	$f(x) = x^4$	$2h^5/5 = 2a\alpha^4$	[A1]
	Convincing algebra to v	verify given results	[A1A1]
			[subtotal 8]

(ii) function values weights integral	L 0	R 0.785398	<i>m</i> 0.392699 1.189207 0.349066 0.415112	h 0.392699	×1 0.088516 1.043431 0.218166 0.227641	×2 0.696882 1.35535 0.218166 0.295691	setup: [M3A3] 0.938444 [A1]
function values weights integral 0.392 function values weights integral	L 0 2699	R 0.392699 0.785398	m 0.19635 1.094949 0.174533 0.191105 0.589049 1.29158 0.174533 0.225423	h 0.19635 0.19635	×1 0.044258 1.021903 0.109083 0.111472 0.436957 1.211226 0.109083 0.132124	×2 0.348441 1.167589 0.109083 0.127364 0.74114 1.383901 0.109083 0.15096	0.429941 repeat: [M2] 0.508508 0.938449 [A1]

Either repeat with h halved to verify that 0.938449 is correct to 6 dp [M1A1] Or observe that the method is converging so rapidly that 0.938449 will be correct to 6dp or [E1A1] [subtotal 12]

(iii) Use routine known to deliver 6dp and vary k:

	· · · · · · · · · · · ·	j			k =	1.46572
L	R	m	h	$\times 1$	$\times 2$	
0	0.392699	0.19635	0.19635	0.044258	0.348441	
function values		1.136464		1.031946	1.237918	
weights		0.174533		0.109083	0.109083	
integral		0.19835		0.112568	0.135036	0.445954
0.392699	0.785398	0.589049	0.19635	0.436957	0.74114	modify
function values		1.406898		1.297918	1.530164	[M1A1]
weights		0.174533		0.109083	0.109083	
integral		0.24555		0.141581	0.166915	0.554046
						1.000000
k	1.465	1.466	1.467			find <i>k</i>
integral	0.999908	1.000036	1.000163			[M1A1]
	hence $k = 1$.	466				

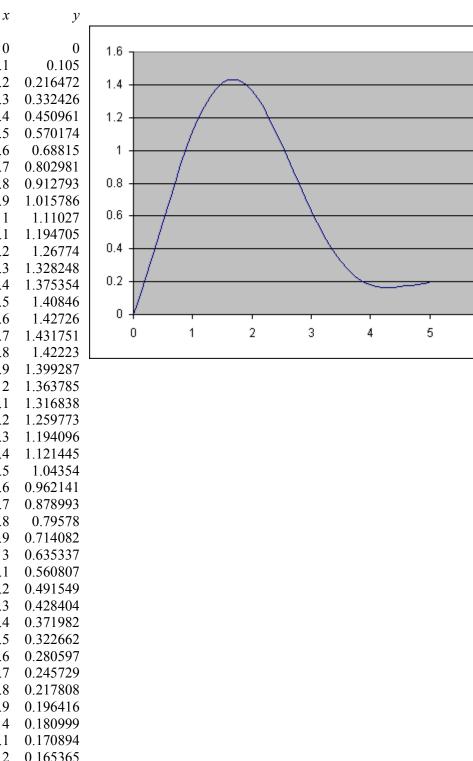
[subtotal 4] **[TOTAL 24]**

4777

WWW. MYMainscloud.com June 20

6

[M1A1]


[M1] [subtotal 8]

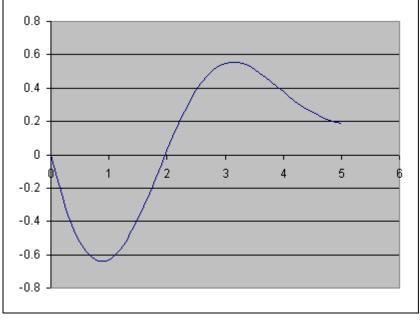
Use central difference formulae for 2nd and 1st derivatives to obtain first given result **3(i)** Hence obtain $y_1 = h^2 - y_{-1}$ Use central difference to obtain $y_1 - y_{-1} = 2h$ Hence given result for y_1

(ii) h

0.1

0 1.6 0.1 0.105 0.2 0.216472 1.4 0.3 0.332426 0.450961 0.4 1.2 0.5 0.570174 0.6 0.68815 1 0.7 0.802981 0.8 0.912793 0.8 0.9 1.015786 0.6 1 1.11027 1.1 1.194705 0.4 1.2 1.26774 1.3 1.328248 0.2 1.4 1.375354 1.5 1.40846 0 1.6 1.42726 1.7 1.431751 1.8 1.42223 1.9 1.399287 2 1.363785 2.1 1.316838 2.2 1.259773 2.3 1.194096 2.4 1.121445 1.04354 2.5 0.962141 2.6 0.878993 2.7 2.8 0.79578 2.9 0.714082 3 0.635337 3.1 0.560807 3.2 0.491549 3.3 0.428404 3.4 0.371982 3.5 0.322662 3.6 0.280597 3.7 0.245729 3.8 0.217808 3.9 0.196416 4 0.180999 4.1 0.170894 4.2 0.165365 4.3 0.163635 4.4 0.164915 4.5 0.168435 4.6 0.173469

MWWW. Mymainscioud.com


4.7	0.179352
4.8	0.185502
4.9	0.191424
5	0.196725

Obtain formula $y_1 = ah + 0.5h^2$ Modify routine

setup	numbers	graph
[M3]	[A3]	[A3]
	[5	subtotal 9]

[M1A1]
[M1A1]
[M1A1G1]

	Modify rout		
	Trial on a to	o obtain $a = -$	1.4 or -1.5
h	x	У	
0.1	0	0	
а	0.1	-0.135	
-1.4	0.2	-0.25582	
	0.3	-0.36107	
	0.4	-0.44993	
	0.5	-0.5219	
	0.6	-0.57677	
	0.7	-0.6146	
	0.8	-0.63565	
	0.9	-0.64047	
	1	-0.6298	
	1.1	-0.60462	
	1.1	-0.56614	
	1.2	-0.51572	
	1.5	-0.45494	
	1.4	-0.3855	
	1.5	-0.3092	
	1.0	-0.22792	
	1.7	-0.14356	
	1.8	-0.14330	
	1.9	0.026884	
			0.8
	2.1	0.109408	
	2.2 2.3	0.187962	0.6
	2.3	0.26113	
	2.4	0.327696	0.4
		0.386672	
	2.6 2.7	0.437316	0.2
		0.479135	
	2.8	0.51189	
	2.9	0.535589	●\
	3	0.550471	-0.2
	3.1	0.556986	
	3.2	0.555768	-0.4
	3.3	0.547604	
	3.4	0.533401	-0.6
	3.5	0.514147	
	3.6	0.490876	-0.8 J
	3.7	0.464631	
	3.8	0.43643	
	3.9	0.40724	
	4	0.377942	
	4.1	0.349319	
	4.2	0.322033	

(ii)

_

4.3	0.296623
4.4	0.27349
4.5	0.252909
4.6	0.235026
4.7	0.219875
4.8	0.207386
4.9	0.197404
5	0.189706

[subtotal 7] [TOTAL24]

4(i)	than or equa	l to the sum	of the magni	tudes of the o	l element in an ther element. l as dominance			[E1] [E1E1]
<							1	[subtotal 3]
(ii)	4	1	2	1	1	a	b	
	4	1	2	1	1	4	2	
	1	4	1	2	0			
	2	1	4	1	0			
	1	2	1	4	0			
	0	0	0	0				
	0.25	-0.0625	-0.10938	-0.00391				setup
	0.321289	-0.05103	-0.14691	-0.01808				[M3A3]
	0.340733	-0.03941	-0.15599	-0.02648				
	0.344469	-0.03388	-0.15715	-0.02989				
	0.344515	-0.0319	-0.15681	-0.03098				
	0.344124	-0.03134	-0.15648	-0.03124				
	0.343886	-0.03123	-0.15633	-0.03127				
	0.343789	-0.03123	-0.15627	-0.03127				
	0.343758	-0.03124	-0.15625	-0.03126				
	0.34375	-0.03125	-0.15625	-0.03125				
	0.343749	-0.03125	-0.15625	-0.03125				
	0.34375	-0.03125	-0.15625	-0.03125				values
	0.34375	-0.03125	-0.15625	-0.03125				[A3]
							1	
	2	1	4	1	1	a	b	
	2	1	4	1	1	2	4	
	1	2	1	4	0			
	4	1	2	1	0			
	1	4	1	2	0			
	0	0	0	0				
	0.5	-0.25	-0.875	0.6875				
	2.03125	-1.95313	-3.42969	4.605469				
	6.033203	-10.5127	-9.11279	22.56519				
	12.69934	-46.9236	-13.2195	94.10735				
	3.347054	-183.278	37.89147	345.9377				
	-156.613	-632.515	456.5137	1115.079				values
	-1153.81	-1881.51	2690.835	2994.509				[A3]
	-5937.67	-4365.6	12560.88	5419.593				
								[subtotal 12]
(:::)	No ocurre		-2 k - 0					FN/F1 & 1 7
(iii)	No converge			·				[M1A1]
	indicates the	at non-strict of	alagonal dom	ninance is not	sufficient			[E1E1]

(iv) Use RHSs 1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1 to obtain inverse as

0.34375	-0.03125	-0.15625	-0.03125
-0.03125	0.34375	-0.03125	-0.15625
-0.15625	-0.03125	0.34375	-0.03125
-0.03125	-0.15625	-0.03125	0.34375

[A1] [A1] [A1] [A1] [subtotal 5] [TOTAL 24]

Grade Thresholds

Advanced GCE MEI Mathematics 7895-8 3895-8 June 2009 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	Α	В	С	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	59	52	45	39	33	0
4752	Raw	72	51	44	38	32	26	0
4753	Raw	72	57	52	47	42	37	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	67	59	51	43	35	0
4755	Raw	72	53	45	37	30	23	0
4756	Raw	72	51	45	39	33	27	0
4757	Raw	72	60	51	42	34	26	0
4758	Raw	72	61	55	49	43	36	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	57	48	39	30	21	0
4762	Raw	72	47	40	33	26	20	0
4763	Raw	72	55	46	38	30	22	0
4764	Raw	72	61	52	43	34	26	0
4766/G241	Raw	72	60	53	46	40	34	0
4767	Raw	72	57	50	44	38	32	0
4768	Raw	72	55	48	41	34	28	0
4769	Raw	72	56	49	42	35	28	0
4771	Raw	72	63	56	49	42	36	0
4772	Raw	72	57	51	45	39	33	0
4773	Raw	72	51	44	37	30	24	0
4776	Raw	72	62	53	45	37	28	0
4776/02	Raw	18	14	12	10	8	7	0
4777	Raw	72	55	47	39	32	25	0

www.mymathscioud.com

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	E	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

www.mymathscloud.com

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
7895	44.1	65.4	81.4	92.1	97.9	100	10375
7896	57.2	78.0	88.9	95.4	98.9	100	1807
7897	87.1	93.55	100	100	100	100	31
7898	0	0	100	100	100	100	1
3895	35.3	52.9	67.4	79.1	88.1	100	16238
3896	52.1	70.2	82.4	90.4	95.7	100	2888
3897	80.4	88.2	91.2	96.1	97.1	100	102
3898	6.3	12.5	18.8	25.0	68.8	100	16

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General) Telephone: 01223 553998

Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

